Bioemulsifier produced by Yarrowia lipolytica using residual glycerol as a carbon source

Autores

  • Joselma Ferreira da Silva Centro de Tecnologias Estratégicas do Nordeste
  • Lucas Albuquerque Rosendo da Silva Universidade Católica de Pernambuco
  • Marta Ribeiro Barbosa Centro de Tecnologias Estratégicas do Nordeste
  • Laureen Michelle Houllou Centro de Tecnologias Estratégicas do Nordeste
  • Carolina Barbosa Malafaia Centro de Tecnologias Estratégicas do Nordeste

DOI:

https://doi.org/10.24221/jeap.5.1.2020.2700.031-037

Palavras-chave:

Yeast, Industrial Waste, Emulsion, Surface Tension

Resumo

Bioemulsifier is bioactive molecules produced by different microorganisms with reducing power and surface and interfacial tension. Among the microorganisms producing this molecule is yeast, which can produce different bioemulsifiers in different substrates. Undoubtedly, this biomolecule has excellent potential for industrial applications, but high production costs are the biggest problem in production. Aiming at cost reduction the present study using crude residual glycerol for biosurfactant production by Yarrowia lipolytica. Then isolates were grown in residual glycerol compound medium, rotating 200 rpm at 28ºC for 48 hours. Bioemulsifier production was observed by analysis of dry biomass, pH, surface tension and emulsification index. The results indicated that the emulsion produced from biosurfactant using glycerol as a carbon source by Y. lipolytica has the potential for bioemulsifier production. All isolates obtained similar results for all analyzes, indicating that this species has a linear production among the isolates. Biomass reached 10.08 ± 0.62 g.L-1, there was a sharp drop in pH reaching 4.6, surface tension averaged 41.7 mN.m-1 and emulsification index reached 56%. The isolates tested show potential for bioemulsifier production using glycerol as an unconventional carbon source.

Downloads

Não há dados estatísticos.

Referências

Ali Khan, A. H.; Tanveer, S.; Alia, S.; Anees, M.; Sultan, A.; Iqbal, M.; Yousaf, S. 2017. Role of nutrients in bacterial biosurfactant production and effect of biosurfactant production on petroleum hydrocarbon biodegradation. Ecological Engineering, 104, 158-164. https://doi.org/10.1016/j.ecoleng.2017.04.023

Almeida, D. G. de; Soares Da Silva, R. de C. F.; Luna, J. M.; Rufino, R. D.; Santos, V. A.; Banat, I. M.; Sarubbo, L. A. 2016. Biosurfactants: Promising molecules for petroleum biotechnology advances. Frontiers in Microbiology, 7, 1-14. https://doi.org/10.3389/fmicb.2016.01718

Amaral, P. F. F.; da Silva, J. M.; Lehocky, M.; Barros-Timmons, A. M. V.; Coelho, M. A. Z.; Marrucho, I. M.; Coutinho, J. A. P. 2006. Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochemistry, 41, (8), 1894-1898. https://doi.org/10.1016/j.procbio.2006.03.029

Banat, I. M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M. G.; Fracchia, L.; Smyth, T. J.; Marchant, R. 2010. Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87, (2), 427-444. https://doi.org/10.1007/s00253-010-2589-0

Bednarski, W.; Adamczak, M.; Tomasik, J.; Płaszczyk, M. 2004. Application of oil refinery waste in the biosynthesis of glycolipids by yeast. Bioresource Technology, 95, (1), 15-18. https://doi.org/10.1016/j.biortech.2004.01.009

Beopoulos, A.; Desfougeres, T.; Sabirova, J.; Zinjarde, S.; Neuvéglise, C.; Nicaud, J.-M. 2010. The Hydrocarbon-Degrading Oleaginous Yeast Yarrowia lipolytica. In: Timmis, K. N.; McGenity, T. J.; van der Meer, J. R.; de Lorenzo, V. (Eds.). Handbook of Hydrocarbon and Lipid Microbiology (pp. 2111-2121). https://doi.org/10.1007/978-3-540-77587-4_152

Bharali, P.; Das, S.; Konwar, B. K.; Thakur, A. J. 2011. Crude biosurfactant from thermophilic Alcaligenes faecalis: Feasibility in petro-spill bioremediation. International Biodeterioration & Biodegradation, 65, (5), 682-690. https://doi.org/10.1016/J.IBIOD.2011.04.001

Campos, J. M.; Stamford, T. L. M.; Sarubbo, L. A.; Luna, J. M. de; Rufino, R. D.; Banat, I. M. 2013. Microbial biosurfactants as additives for food industries. Biotechnology Progress, 29, (5), 1097-1108. https://doi.org/10.1002/btpr.1796

Cirigliano, M. C.; Carman, G. M. 1984. Isolation of a bioemulsifier from Candida lipolytica. Applied and Environmental Microbiology, 48, (4), 747-750. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6439118

Csutak, O.; Stoica, I.; Vassu, T. 2012. Evaluation of Production, Stability and Activity of Biosurfactants from Yeasts with Application in Bioremediation of Oil-polluted Environment. Revista de Chimie -Bucharest- Original Edition, 63, (10), 973-977.

Du Nouy, L. P. 1925. An interfacial tensiometer for universal use. The Journal of General Physiology, 7, (5), 625-632.

Fickers, P.; Benetti, P.; Wache, Y.; Marty, A.; Mauersberger, S.; Smit, M.; Nicaud, J. (2005). Hydrophobic substrate utilisation by the yeast , and its potential applications. FEMS Yeast Research, 5 (6-7), 527-543. https://doi.org/10.1016/j.femsyr.2004.09.004

Fontes, G. C.; Ramos, N. M.; Amaral, P. F. F.; Nele, M.; Coelho, M. A. Z. 2012. Renewable resources for biosurfactant production by Yarrowia lipolytica. Brazilian Journal of Chemical Engineering, 29, (3), 483-493. https://doi.org/10.1590/S0104-66322012000300005

Gudiña, E. J.; Rangarajan, V.; Sen, R.; Rodrigues, L. R. 2013. Potential therapeutic applications of biosurfactants. Trends in Pharmacological Sciences, 34, (12), 667-675. https://doi.org/10.1016/j.tips.2013.10.002

Haba, E.; Espuny, M. J.; Busquets, M.; Manresa, A. 2000. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology, 88, (3), 379–387. https://doi.org/10.1046/j.1365-2672.2000.00961.x

Laufenberg, G.; Kunz, B.; Nystroem, M. 2003. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, 87, (4), 167-198. https://doi.org/10.1016/S0960-8524(02)00167-0

Lawniczak, L.; Marecik, R.; Chrzanowski, L. 2013. Contributions of biosurfactants to natural or induced bioremediation. Applied Microbiology and Biotechnology, 97, (6), 2327-2339. https://doi.org/10.1007/s00253-013-4740-1

Lima, J. R. C. de; Calixto, R. O. da R.; Lopes, L. M. de A.; França, F. P. de. 2013. Utilization of Crude Glycerol by Yarrowia lipolytica IMUFRJ 50678 in Bioproduct Production. Engineering, Journal of Chemistry and Chemical, 7, (11), 1087-1093.

Rufino, R. D.; de Luna, J. M.; de Campos Takaki, G. M.; Sarubbo, L. A. 2014. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electronic Journal of Biotechnology, 17, (1), 34-38. https://doi.org/10.1016/J.EJBT.2013.12.006

Rufino, R. D.; Luna, J. M. de; Takaki, G. M. de C.; Sarubbo, L. A. 2014. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electronic Journal of Biotechnology, 17, (1), 34-38. https://doi.org/10.1016/j.ejbt.2013.12.006

Saharan, B.; Sahu, R.; Sharma, D. 2011. A review on biosurfactants: Fermentation, current developments and perspectives. Genet Eng Biotechnol, 29, 1-39.

Santos, D. K. F.; Rufino, R. D.; Luna, J. M.; Santos, V. A.; Sarubbo, L. A. 2016. Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17, (3), 1-31. . https://doi.org/10.3390/ijms17030401

Sarubbo, L.; Luna, J.; Rufino, R. 2015. Application of a Biosurfactant Produced in Low-cost Substrates in the Removal of Hydrophobic Contaminants. Chemical Engineering Transactions, 43, 295-300. https://doi.org/10.3303/CET1543050

Silva, N. M. P. R.; Rufino, R. D.; Luna, J. M.; Santos, V. A.; Sarubbo, L. A. 2014. Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatalysis and Agricultural Biotechnology, 3, (2), 132-139. https://doi.org/10.1016/j.bcab.2013.09.005

Silva, S. N. R. L.; Farias, C. B. B.; Rufino, R. D.; Luna, J. M.; Sarubbo, L. A. 2010. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids and Surfaces B: Biointerfaces, 79, (1), 174-183. https://doi.org/10.1016/j.colsurfb.2010.03.050

Singh, A.; Hamme, J. D. Van; Ward, O. P. (2007, January). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25, (1), 99-121. https://doi.org/10.1016/j.biotechadv.2006.10.004

Singh, V. 2012. Biosurfactant-Isolation, Production, Purification & Significance. In: International Journal of Scientific and Research Publications, 2, (7), 1-4.

Sousa, J. R. de; Correia, J. A. da C.; Almeida, J. G. L. de; Rodrigues, S.; Pessoa, O. D. L.; Melo, V. M. M.; Gonalves, L. R. B. 2011. Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Process Biochemistry, 46, (9), 1831-1839. https://doi.org/10.1016/j.procbio.2011.06.016

Souza, K. S. T.; Gudiña, E. J.; Azevedo, Z.; de Freitas, V.; Schwan, R. F.; Rodrigues, L. R.; Teixeira, J. A. 2017. New glycolipid biosurfactants produced by the yeast strain Wickerhamomyces anomalus CCMA 0358. Colloids and Surfaces. B, Biointerfaces, 154, 373-382. https://doi.org/10.1016/j.colsurfb.2017.03.041

Thavasi, R.; Jayalakshmi, S.; Banat, I. M. 2011. Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource Technology, 102, (3), 3366-3372. https://doi.org/10.1016/j.biortech.2010.11.071

Downloads

Publicado

2020-01-03

Como Citar

Silva, J. F. da, Silva, L. A. R. da, Barbosa, M. R., Houllou, L. M., & Malafaia, C. B. (2020). Bioemulsifier produced by Yarrowia lipolytica using residual glycerol as a carbon source. Journal of Environmental Analysis and Progress, 5(1), 031–037. https://doi.org/10.24221/jeap.5.1.2020.2700.031-037