Effect of herbivory by goats on primary and secondary metabolism of Cocos nucifera L. (Arecaceae) in a semi-arid environment in Brazilian Northeast

Autores

DOI:

https://doi.org/10.24221/jeap.5.3.2020.3446.337-345

Palavras-chave:

Biotic stress, plant physiology, photosynthesis, saponins, alkaloids, steroids.

Resumo

The relationship between herbivores and plants has important ecological implications for both organisms and directly affects the plant’s physiological responses, which need to invest in structures and secondary metabolites to overcome the damages. This study aimed to evaluate functional attributes related to the primary and secondary metabolism of Cocos nucifera L. (Arecaceae) submitted to herbivory by goats. Five individuals of C. nucifera were selected in two areas, one with and one without goats. The carbohydrate content, specific leaf mass, and phytochemical screening were obtained, evaluating the presence or absence of saponins, tannins, flavonoids, steroids, alkaloids, and glycosides. The results show that plants under herbivory showed 50% more sugars and a higher specific leaf mass than no-herbivory plants. Also, plants under herbivory showed a higher amount of saponins, steroids, and alkaloids. The production of defense metabolites, which are energetically costly, require the energy supply provided by the carbohydrates produced in photosynthesis; thus, higher levels of sugars were observed in attacked plants. Even under attack, C. nucifera plants allocate resources for biomass production, to increase leaf sclerophylly and hinder herbivory. The investment in saponins, steroids, and alkaloids is related to herbivory, as demonstrated by the analysis of principal components analysis. We conclude that herbivory by goats activates defense responses in C. nucifera plants, making them allocate sugars to produce secondary metabolites.

Downloads

Não há dados estatísticos.

Biografia do Autor

Nathália Thaís Cavalcante da Silva, Universidade Federal de Pernambuco

Graduated in the Biological Sciences Degree course at the Universidade de Pernambuco (UPE)

Maria Aline Soares da Silva, Universidade de Pernambuco (UPE)

Graduated in the Biological Sciences Degree course at the Universidade de Pernambuco (UPE)

Alissandra Trajano Nunes, Universidade de Pernambuco (UPE)

Graduated in Biological Sciences at Universidade Federal Rural de Pernambuco. Master in Botany by UFRPE and PhD in Biotechnology by RENORBIO. Adjunct professor and coordinator of the Biological Sciences Degree course at the Universidade de Pernambuco, campus Garanhuns.

Hiram Marinho Falcão, Universidade de Pernambuco (UPE)

Graduated in Biological Sciences at Universidade de Pernambuco (UPE). Master and PhD in Botany by UFPE. Adjunct professor of Botany at the Universidade de Pernambuco, campus Garanhuns.

Referências

Anwar, A.; Liu, Y.; Dong, R.; Bai, L.; Yu, X.; Li, Y. 2018. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol. Res., 51, 2-15. DOI: 10.1186/s40659-018-0195-2

Azevedo, P. V.; de Sousa, I. F.; da Silva B. B.; da Silva, V. de P. R. 2006. Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil. Agric. Water Manag., 84, 03, 259-264. DOI: 10.1016/j.agwat.2006.03.001

Bajguz, A.; Hayat, S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem., 47, 1-8. DOI: 10.1016/j.plaphy.2008.10.002

Behmer, S.; Grebenok, R.; Douglas, A. 2011. Plant sterols and host plant suitability for a phloem‐feeding insect. Funct. Ecol., 25, 484-491. DOI: 10.1111/j.1365-2435.2010.01810.x

Belete, T. 2018. Defense Mechanisms of Plants to Insect Pests: From Morphological to Biochemical Approach. Trends Tech. Sci. Res., 02, 30-38. DOI: 10.19080/TTSR.2018.02.555584

Câmara, F. M. M.; Alves, A. A.; Celedônio, W. F.; Oliveira, L. M.; Pereira, G. A.; Mendonça, V. 2018. Fenologia do coqueiro anão verde em região semiárida. Agropecuária Científica no Semiárido Centro de Saúde e Tecnologia Rural.

Constabel, C.; Yoshida, K.; Walker, V. 2014. Diverse Ecological Roles of Plant Tannins: Plant Defense and Beyond. In: Romani, A.; Lattanzio, V.; Quideau, S. (org.). Recent advances on polyphenol research. Wiley Online Library, New Jersey, pp. 115-134. DOI: 10.1002/9781118329634.ch5.

Corrêa, P. G.; Pimentel, R. M. M.; Cortez, J. S. A.; Xavier, H. S. 2008. Herbivoria e anatomia foliar em plantas tropicais brasileiras. Cienc. Cult., 60, 03, 54-57.

Dourado, A. C. P.; Sá-Neto, R. J.; Gualberto, S. A.; Corrêa, M. M. 2016. Herbivoria e características foliares em seis espécies de plantas da Caatinga do nordeste brasileiro. R. Bras. Bioci., 14, 03, 145-151.

Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350-356. DOI: 10.1021/ac60111a017

Erb, M. 2018. Plant Defenses against Herbivory: Closing the Fitness Gap. Trends Plant Sci., 23, 03, 187–194. DOI: 10.1016/j.tplants.2017.11.005

Ferrieri, A. P.; Arce, C. C. M.; Machado, R. A. R.; Meza-Canales. I. D.; Lima, E.; Baldwin, I. T.; Erb, M. 2015. A Nicotiana attenuata cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore attacked plants. New Phytol., 208, 519-530. DOI: 10.1111/nph.13475

González-Pech, P. G.; Torres-Acosta, J. F. J.; Sandoval-Castro, C. A. 2014. Adapting a bite coding gid for small ruminants browsing a deciduous tropical forest. Trop. Subtrop. Agroecosystems, 17, 63-70.

Goyal, A. K.; Middha, S. K.; Sen, A. 2010. Evaluation of the DPPH radical scavenging activity, total phenols and antioxidant activities in Indian wild Bambusa vulgaris “Vittata” methanolic leaf extract. J. Nat. Pharm., 01, 40-45. DOI: 10.4103/2229-5119.73586

Hussain, M.; Debnath, B.; Qasim, M.; Bamisile, B. S.; Islam, W.; Hameed, M. S.; Wang, L.; Qiu, D. 2019. Role of Saponins in Plant Defense Against Specialist Herbivores. Molecules, 24, 11, 01-21. DOI: 10.3390/molecules24112067.

IBGE - Instituto Brasileiro de Geografia e Estatística. 2017. Censo Agropecuário. Available in: http://www.brasil.gov.br/noticias/economia-e-financas/2018/08/censo- agropecuario-rebanho-caprino-aumentou-16-no-brasil

Kaur, R.; Gupta, A. K.; Taggar, G. K. 2015. Induced resistance by oxidative shifts in pigeonpea (Cajanus cajan L.) following Helicoverpa armigera (Hübner) herbivory. Pest Manag. Sci., 71, 770-782. DOI: 10.1002/ps.3851

Leal, I. R.; Vicente, A.; Tabarelli, M. 2016. Herbivoria por caprinos na Caatinga da região de Xingó: Uma análise preliminar. In: Leal, I. R.; Tabarelli, M.; Silva, J. M. C. (org.). Ecologia e Conservação da Caatinga Pernambuco. Universidade Federal de Pernambuco, pp. 695-715.

Machado, R. A. R.; Baldwin, I. T.; Erb, M. 2017. Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. New Phytol., 215, 02, 803-812. DOI:10.1111/nph.14597

Madritch, M. D.; Lindroth, R. L. 2015. Condensed tannins increase nitrogen recovery by trees following insect defoliation. New Phytol., 208, 410-420. DOI: 10.1111/nph.13444

Medeiros, L. P.; Girão, R. N.; Girão, E. S.; Leal, J. A. 2000. Caprinos. Embrapa Caprinos.

Ministério da Integração Nacional (MIN). 2005. Nova delimitação do semiárido brasileiro. Governo Federal.

Mithöfer, A.; Boland, W. 2012. Plant defense against herbivory: chemical aspects. Annual Rev. Plant Biol., 63, 431-450. DOI: 10.1146/annurev-arplant-042110-103854

Mouco, G.; Bernardino, M. J.; Cornélio, M. L. 2003. Controle de qualidade de ervas medicinais. Revista Biotecnologia Ciência & Desenvolvimento, São Paulo. Disponível em: https://sites.usp.br/lot/. Acesso em: 20 out. 2019.

Mugford, S. T.; Osbourn, A. 2012. Saponin synthesis and function. In: Bach, T. J.; Rohmer, M. (org.). Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, pp. 405-424.

Neves, F.; Araujo, L.; Espírito-Santo, M. M.; Fagundes, M.; Fernandes, G.; Sanchez-Azofeifa, G. A.; Quesada, M. 2010. Canopy Herbivory and Insect Herbivore Diversity in a Dry Forest-Savanna Transition in Brazil. Biotropica, 42, 112-118. DOI: 10.1111/j.1744-7429.2009.00541.x

Oliveira, F.; Akisue, G.; Akisue, M. K. 1998. Farmacognosia. Atheneu, São Paulo.

Paulo, J. L. A.; Lopes, F. A. 2014. Daily activity patterns of Saanen goats in the semi-arid Northeast of Brazil. R. Bras. Zootec., 43, 09, 464-470. DOI: 10.1590/S1516-35982014000900002

Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M. S.; Cornwell, W. K.; Craine, J. M.; Gurvich, D. E.; Urcelay, C.; Veneklaas, E. J.; Reich, P. B.; Poorter, L.; Wright, I. J.; Ray, P.; Enrico, L.; Pausas, J. G.; de Vos, A. C.; Buchmann, N.; Funes, G.; Quétier, F.; Hodgson, J. G.; Thompson, K.; Morgan, H. D.; ter Steege, H.; van der Heijden, M. G. A.; Sack, L.; Blonder, B.; Poschlod, P.; Vaieretti, M. V.; Conti, G.; Staver, A. C.; Aquino, S.; Cornelissen, J. H. C. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot., 61, 167-234. DOI: 10.1071/BT12225

Peschiutta, M. L.; Scholz, F. G.; Goldstein, G.; Bucci, S. J. 2018. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency. Acta Oecol., 86, 9-16. DOI: 10.1016/j.actao.2017.11.007

Rasband, W. S. 2014. ImageJ. U. S. National. Institutes of Health, Bethesda.

Silva, N. L. A.; Miranda, F. A. A.; Conceição, G. M. 2019. Triagem fitoquímica de plantas de Cerrado, da área de proteção ambiental municipal de Inhamum Caxias. Scientia Plena, 06, 02, 1-16.

Soetan, K.; Ajibade, T.; Akinrinde, A. 2014. 20 Saponins: A ubiquitous phytochemical: a review of its biochemical, physiological and pharmacological effects. Recent Prog. Med. Plants, 43, 1-24.

Soler, R.; Erb, M.; Kaplan, I. 2013. Long distance root-shoot signalling in plant-insect community interactions. Trends Plant Sci., 18, 149-156. DOI: 10.1016/j.tplants.2012.08.010

Tomlinson, K. W.; van Langevelde, F.; Ward, D.; Prins, H. H. T.; de Bie, S.; Vosman, B.; Sampaio, E. V. S. B.; Sterck, F. J. 2015. Defence against vertebrate herbivores trades off into architectural and low nutrient strategies amongst savanna Fabaceae species. Oikos, 125, 01, 126-136. DOI:10.1111/oik.02325

Velasque, M.; Del-Claro, K. 2016. Host plant phenology may determine the abundance of an ecosystem engineering herbivore in a tropical savanna. Ecol. Entomol., 41, 04, 421-430. DOI:10.1111/een.12317

Verma, S.; Nizam, S.; Verma, P. K. 2013. Biotic and abiotic stress signalling in plants. In: Swart, D.; Ahmad, A.; Abdin, M. Z. (org.) Stress Signaling in Plants: Genomics and Proteomics Perspective, 1, 25-49.

Vos, I. A.; Verhage, A.; Schuurink, R. C.; Watt, L. G.; Pieterse, C. M.; van Wees, S. C. 2013. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Front Plant Sci., 04, 1-10. DOI: 10.3389/fpls.2013.00539

War, A. B.; Taggar, G. K.; Hussain, B.; Taggar, M. S.; Nair, R. M.; Sharma, H. C. 2018. Plant defense against herbivory and insect adaptations. AoB Plants, 10, 04, 1-19, ply037. DOI: 10.1093/aobpla/ply037

Wink, M.; Schmeller, T.; Latz-Bruning, B. 1998. Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA, and other molecular targets. J. Chem. Ecol., 24, 1881-937. DOI: 10.1023/A:1022315802264

Xiao, L.; Carrillo, J.; Siemann, E.; Ding, J. 2019. Herbivore-specific induction of indirect and direct defensive responses in leaves and roots. AoB Plants, 11, 01, plz003. DOI: 10.1093/aobpla/plz003

Zhou, S.; Lou, Y-R.; Tzin, V.; Jander, G. 2015. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol., 169, 1488-1498. DOI: 10.1104/pp.15.01405

Züst, T.; Rasmann, S.; Agrawal, A. A. 2015. Growth-defense trade-offs for two major anti-herbivore traits of the common milkweed Asclepias syriaca. Oikos, 124, 1404-1415. DOI: 10.1111/oik.02075

Downloads

Publicado

2020-09-09

Como Citar

Silva, N. T. C. da, Silva, M. A. S. da, Nunes, A. T., & Falcão, H. M. (2020). Effect of herbivory by goats on primary and secondary metabolism of Cocos nucifera L. (Arecaceae) in a semi-arid environment in Brazilian Northeast. Journal of Environmental Analysis and Progress, 5(3), 337–345. https://doi.org/10.24221/jeap.5.3.2020.3446.337-345