Will increasing temperature and CO2 affect pumpkin early development in Brazilian semi-arid? | O aumento da temperatura e do CO2 afetará o desenvolvimento precoce da abóbora no semi-árido brasileiro?


  • Bárbara França Dantas
  • Francislene Angelotti
  • Carlos Alberto Aragão


Cucurbitaceae, Germination, Climate change


With rising levels of CO2 in atmosphere, understanding possible impacts on development and growth of plants becomes increasingly important. The aim of this study was to evaluate interaction between different temperatures and CO2 levels in germination and early development of seedlings of different species of pumpkin. Seeds of Cucurbita pepo cultivars ‘Caserta’ and ‘Redonda’, and Cucurbita maxima ‘Coroa’ were sown in trays of 36 cells and held in growth chambers with different combinations of levels of CO2 and day/night temperatures. The experimental design was completely randomized in a 2 X 3 factorial scheme with two levels of CO2 concentration (360 and 550ppm) and three day/night temperatures (26/20, 29/26 and 32/26°C), with four replicates of 18 seedlings for each treatment. CO2 levels used caused different effects among cultivars for most variables, but a significant change in physiological behavior of seedlings with increasing CO2 concentration was not observed. Increase in temperature led to physiological changes in both seeds and seedlings. The predicted conditions of increasing concentration of atmospheric CO2 and temperature are damaging to production of pumpkin seedlings


Não há dados estatísticos.


ANGELOTTI, F.; SÁ, I. B.; MELO, R. F.; Mudanças climáticas e desertificação no Semiárido Brasileiro. In: ANGELOTTI, F.; SÁ, I. B.; MENEZES, E. A.; PELLEGRINO, G. Q. (Ed.). Mudanças climáticas e desertificação no Semi-Árido brasileiro. Petrolina: Embrapa Semi-Árido; Campinas: Embrapa Informática Agropecuária, p. 41-49. 2009.

BERNACCHI C. J., SINGSAAS E, L., PIMENTEL C., PORTIS, A. R., LONG, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environment. v.24, p.253-259. 2001.

BISHOP, K. A.; LEAKEY, A. D. B.; AINSWORTH, E. A. How seasonal temperature or water inputs affect the relative response of C3 crops to elevated [CO2]: a global analysis of open top chamber and free air CO2 enrichment studies. Food and Energy Security, v. 3, n. 1, p. 33-45, 2014.

BRASIL. Regras para análise de sementes. Ministério da Agricultura, Brasília. 2009.

CAPORN, S. J. M. The effects of acides of nitrogen and carbon dioxid enrichment on photosynthesis and growth of letuce (Lactuca sativa L.). New Phytologist. v.111, p.473-481. 1989.

COLLINS, W., COLMAN, R., HAYWOOD, J., MANNING, M.R. AND MOTE, P. The physical science behind climate change. Scientific American. v.297, p.48-57. 2007.

DÜRR, C.; DICKIE, J. B.; YANG, X. Y.; PRITCHARD, H. W. (2015). Ranges of critical temperature and water potential values for the germination of species worldwide: Contribution to a seed trait database. Agricultural and Forest Meteorology, v.200, p.222-232, 2015.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia. v.35, p.1039-1042. 2011.

GUZMÁN, G. I.; GONZÁLEZ DE MOLINA, M. Energy efficiency in agrarian systems from an agroecological perspective. Agroecology and Sustainable Food Systems, v. 39, n. 8, p. 924-952, 2015.

HATFIELD, J. L. et al. 2011. Climate impacts on agriculture: implications for crop production. Agronomy Journal. v.103, p.351–370. 2011.

ITO, T. More intensive production of lettuce under artificially controlled conditions. Acta Horticulturae. v.260, p.381-389. 1989.

Dantas, B.F.; Angelotti, F.; Aragão, C.A. 30

Revista Geama (ISSN 2447-0740), v.9, n.1, abn-jun, 2017.

KOEFENDER J, MENEZES NL, BURIOL GA, TRENTIN R AND CASTILHOS G. Influência da temperatura e da luz na germinação da semente de calêndula. Horticultura Brasileira. v.27, p.207-210. 2009.

KOTOWSKI, F. Temperature relations to germination of vegetable seed. Proceedings of the American Society Horticultural Science. v.23, p.176-184. 1926.

LABOURIAU, L.G. A germinação das sementes. Organização dos Estados Americanos, Brasília. 1962.

MAGUIRE, J.D. Speed of germination - aid in selection and evaluation for seedling emergence and vigor. Crop Science. v.2, p.176-177. 1962.

MARCOS FILHO, J. Fisiologia de sementes de plantas cultivadas. Fealq, Piracicaba. 2005.

MEDLYN, B. E., DREYER, E., ELLSWORTH, D., FORSTREUTER, M., HARLEY, P. C., KIRSCHBAUM, M.U. F., LE ROUX, X., MONTPIED, P., STRASSEMEYER, J., WALCROFT, A., WANG, K. AND LOUSTAU, D. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environment. v.25, p.1167-1179. 2002.

MORETTI C. L., MATTOS L. M., CALBO A. G., SARGENT S. A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, v.43, p.1824-1832. 2010.

MORTENSEN, L. M. CO2 enrichment in greenhouses: crop response. Scientia Horticulturae. 33:1-25. 1987.

NAKAGAWA, J. Testes de vigor baseados no desempenho das plântulas. p.2.1-2.24. In: F.C. Krzyzanoski, R.D. Vieira and J.B. França Neto (eds.). Vigor de sementes: conceitos e testes. Abrates, Londrina. 1999.

NASCIMENTO, W. M. AND PEREIRA, R. S. Preventing thermo-inhibition in carrot by seed priming. Seed Science Technolgy. v.35, p.503-506. 2007.

NASCIMENTO, W.M. , PEREIRA, R.S. Avaliação de cultivares de alface visando a germinação em condições de altas temperaturas. Horticultura Brasileira. v.20, p.1-2. 2002.

PARMESAN, C.; HANLEY, M. E. Plants and climate change: complexities and surprises. Annals of botany, v. 116, n. 6, p. 849-864, 2015.

PARRY, M.L. et al. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University, Cambridge. 2007.

PEREIRA, R. S., NASCIMENTO, W. M., VIEIRA, J. V. Germinação e vigor de sementes de cenoura sob condições de altas temperaturas. Horticultura Brasileira. v.25, p. 215-219. 2007.

PEREIRA, R.S. AND NASCIMENTO, W.M. Utilização do condicionamento osmótico de sementes de cenoura visando a germinação em condições de temperaturas altas. Horticultura Brasileira. v.20, p. 2-4. 2002.

PROBRT, E. H. The role of temperature in germination ecophysiology. p.285-325.In: M. Fenner (ed.). The ecology of regeneration in plant communities. 2.ed. Cab International, Wallingford. 1993.

RESENDE, G.M.; BORGES, R.M.E.; GONÇALVES, N.P.S. Produtividade da cultura da abóbora em diferentes densidades de plantio no Vale do São Francisco. Horticultura Brasileira. Brasilia, v.31, p.504-508. 2013.

RUELLAND, E.; ZACHOWSKI, A. How plants sense temperature. Environmental and Experimental Botany, v. 69, n. 3, p. 225-232, 2010.

SCHLENKER, Wolfram; ROBERTS, Michael J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of sciences, v. 106, n. 37, p. 15594-15598, 2009.

SCHÖNGART, J.; JUNK, W. J.; PIEDADE, M. T. F.; AYRES, J. M.;HUTTERMANN, A.; WORBES, M. Teleconnection between tree growth in the Amazonian floodplains and the El Nino-Southern Oscillation effect. Global Change Biology. v.10, p.683-692. 2004.

SIEBKE, K.; GHANNOUM, O.; CONROY, J. P.; VON CAEMMERER, S. Elevated CO2 increases the leaf temperature of two glasshouse-grown C4

Dantas, B.F.; Angelotti, F.; Aragão, C.A. 31 grasses. Functional Plant Biology. v.29, p.1377-1385. 2002.

SILVA, R. C. B; LOPES, A. P.; SILVA, K. K. A.; SILVA, T. C. F. S.; ARAGÃO, C. A.; DANTAS, B. F.; ANGELOTTI, F. Crescimento inicial de plântulas de melancia submetidas ao aumento da temperatura e concentrações de CO2. Revista Magistra, Cruz das Almas, v. 27, n. 1, p. 33-43. 2015.

STEINER, F., PINTO JUNIOR, A. S., ZOZ, T., GUIMARÃES, V. F., DRANSKI, J. A. L. AND RHEINHEIMER, A. R. Germinação de sementes de rabanete sob temperaturas adversas. Revista Brasileira de Ciencias Agrárias. v.4, p.430-434. 2009.

STOKER, T.F., QIN, D., PLATTNER, G.K., TIGNOR, M. , ALLEN, S.K., BOSCHUNG, J., NAUELS, A., XIA, Y., BEX, V. AND MIDGLEY, P.M. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University, Cambridge. 2013.

WELCH, J. R., VINCENT, J. R.; AUFFHAMMER, M.; MOYA, P. F.; DOBERMANN, A.; DAWE, D. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of National Academy of Science. v.107, p.14562–14567. 2010.




Como Citar

Dantas, B. F., Angelotti, F., & Aragão, C. A. (2017). Will increasing temperature and CO2 affect pumpkin early development in Brazilian semi-arid? | O aumento da temperatura e do CO2 afetará o desenvolvimento precoce da abóbora no semi-árido brasileiro?. Revista Geama, 3(2), 87–93. Recuperado de http://www.journals.ufrpe.br/index.php/geama/article/view/1387