THE Cheese whey as a sustainable substrate for protease production by Aspergillus sp. UCP 1290

Soro de queijo como substrato sustentável para produção de protease por Aspergillus sp. UCP 1290

Authors

Keywords:

co-products, alternative materials, waste, appreciation, environment

Abstract

The objective of this study was to evaluate protease production by submerged fermentation of Aspergillus spp. by using cheese whey as the sole substrate. Initially, six Aspergillus spp. isolates were screened for protease production in a conventional medium containing gelatin and an alternative whey-based medium. A 23 factorial design was used to evaluate the main effects and interactions of the variables (i.e., whey concentration, temperature, and medium pH) on protease production. Aspergillus sp. UCP 1290 was selected for its higher proteolytic activity, which reached 28.75 U/mL in the conventional medium and 37.33 U/mL in the whey medium. The highest protease production, 129.80 U/mL, by Aspergillus sp. UCP 1290 was obtained at 20% whey concentration, pH 8.0, and temperature 32 °C under submerged fermentation at 150 rpm for 96 hours. Temperature and whey concentration were the most significant independent variables for enzyme production. Proteolytic activity was enhanced by the interaction between a low concentration of cheese whey and a higher temperature. The enzyme exhibited maximum catalytic activity at 60 °C and pH 7.0, classifying it as a neutral protease. Results have shown Aspergillus sp. UCP 1290 is an effective producer of protease using cheese whey as the sole substrate as well as the produced enzyme has potential applications in industrial processes.

Downloads

Download data is not yet available.

Author Biographies

Jaqueline dos Santos Marinho, Catholic University of Pernambuco, Recife, Pernambuco, Brazil

Mestre em Desenvolvimento de Processos Ambientais pela Universidade Católica de Pernambuco; Graduada em Engenharia Civil pela UNINASSAU; Graduada em Engenharia Ambiental e Sanitária pela UNINASSAU.  

Galba Maria de Campos Takaki, Catholic University of Pernambuco, Recife, Pernambuco, Brazil

Graduação em Farmácia-Bioquímica. pela Universidade Federal de Pernambuco (1965), mestrado em Microbiologia e Imunologia pela Universidade Federal de São Paulo (1978) e doutorado em Microbiologia e Imunologia pela Universidade Federal de São Paulo/ Newcastle upon Tyne, Inglaterra(1984) e Pós-doutorado em Bacteriologia e Biotecnologia pela Faculté de Pharmacie, Montpellier e Grénoble, França, pelo Programa Capes/Cofecub-UFPE. Pesquisadora Research Center for Microbial Toxicoses, Chiba, Japão (2000). 

Luciana Franco, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil

Possui Graduação em Medicina Veterinária pela Universidade Federal Rural de Pernambuco, Mestrado em Bioquímica e Fisiologia pela Universidade Federal de Pernambuco e Doutorado em Biologia de Fungos pela Universidade Federal de Pernambuco. Atualmente é Professora Associada da Universidade Federal Rural de Pernambuco no Departamento de Biologia e Membro efetivo do Programa de Mestrado Profissional em Saúde Única do Departamento de Medicina Veterinária da UFRPE

Marcos Antonio Barbosa de Lima, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil

Graduação em Ciências Biomédicas pela Universidade Federal de Pernambuco, Mestrado e Doutorado em Biologia de Fungos pela Universidade Federal de Pernambuco e Pós-Doutorado em Microbiologia Aplicada pela Universidade do Porto, Portugal em parceria com a Escola Superior de Biotecnologia da Universidade Católica Portuguesa. Atualmente professor Associado da Universidade Federal Rural de Pernambuco, lotado no Departamento de Biologia onde coordeno o Laboratório de Microbiologia Agrícola e Ambiental (LAMAA).

Carlos Alberto Alves da Silva, Catholic University of Pernambuco, Recife, Pernambuco, Brazil

Graduação em Engenharia Química, pela Universidade Católica de Pernambuco (1988), Mestrado em Ciências Farmacêuticas, pela Universidade Federal de Pernambuco (1992), Doutorado em Biotecnologia, pela Universidade Técnica de Lisboa - Instituto Superior Técnico (1998) e Pós Doutorado no Instituto de Química de Sarriá - Universidade Ramon Llull, Barcelona, Espanha (2007-2008). Atualmente é Professor Adjunto IV e leciona nos Cursos das Engenharias Ambiental e Química, Licenciatura em Química, e Pesquisador Efetivo do Núcleo de Pesquisas em Ciências Ambientais e Biotecnologia (NPCIAMB), Universidade Católica de Pernambuco. Na pós graduação, é Professor Permanente do Mestrado em Desenvolvimento de Processos Ambientais (MDPA), também na Universidade Católica de Pernambuco.

References

Ao Xl, Yu X, Wu, Dt. et al. Purification and characterization of neutral protease from Aspergillus oryzae Y1 isolated from naturally fermented broad beans. AMB Express. 2018 Jun; 8:96, doi: 10.1186/s13568-018-0611-6.

Arumugam N et al. Optimized production of extracellular alkaline protease from Aspergillus tamarii with natural by-products in a batch stirred tank bioreactor. Preparative Biochemistry & Biotechnology. 2020 Jun; 50, doi: 10.1080/10826068.2020.1777426.

Banerjee G. and Ray Ak. Impact of microbial proteases on biotechnological industries. Biotechnology and Genetic Engineering Reviews. 2017; 33(2), 119-143, doi: 10.1080/026 48725.2017.1408256.

Gimenes NC, Silveira E, Tambourgi EB. An overview of proteases: production, downstream processes and industrial applications. Separation & Purification Reviews. 2019; 1-21.

Gul A, et al. Efficient Utilization of Dairy Industry Waste for Hyper-Production and Characterization of a Novel Cysteine Protease. Pakistan Journal of Zoology. 2012; 44(3), 713-721.

Ibarruri j, Hernández I. Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp. Bioprocess and Biosystems Engineering. 2019; 42(8), 1285–1300, doi: 10.1007/s00449-019-02127-4.

Ieliszek M. et al. The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry. Open Life Sciences. 2020;15(1), 787–796, doi: 10.1515/biol-2020-0099.

Leighton TJ. et al. The relationship of serine protease activity to RNA polymerase modification and sporulation in Bacillus subtilis. Journal of Molecular Biology. 1973; 76(1), 103–122, doi: 10.1016/0022-2836(73)90083-1.

Manachini PL, Fortina MG, Parini C. Purification and properties of an endopolygalacturonase produced by Rhizopus stolonifer. Biotechnology letters. 1987; 9(3), 219-224.

Marzo C. et al. Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation. Waste Management & Research. 2019; 37(2), 149-156.

Matkawala F. et al. Microbial alkaline serine proteases: Production, properties and applicati ons. World Journal of Microbiology and Biotechnology. 2021; 37(4), 63, doi: 10.1007/s112 74-021-03036-z.

Menezes BS. et al. Biomass of unconventional plants from Brazilian semiarid as substrate for hydrolytic enzymes production by Aspergillus niger under solid and submerged fermentation. Acta Scientiarum. Biological Sciences. 2021; 43, e48257-48257, doi: 10.4025/actas cibiolsci. v43i1.48257.

Nascimento T. et al. Production and Characterization of New Fibrinolytic Protease from Mucor subtillissimus UCP 1262 in Solid-State Fermentation. Advances in Enzyme Research, 2015; 03, 81–91, 2015, doi: 10.4236/aer.2015.33009.

Naveed M, et al. Protease—A Versatile and Ecofriendly Biocatalyst with Multi-Industrial Applications: An Updated Review. Catalysis Letters. 2021; 151(2), 307–323, doi: 10.1007/s 10562-020-03316-7.

Osman ME, Yasmin E, Khattab. Aspergillus terreus proteases: characterization and applications. Journal of Chemical, Biological and Physical Sciences. 2014; 4, 2333 –2346.

Pescuma M, De Valdez GF, Mozzi F. Whey-derived valuable products obtained by microbial fermentation. Applied Microbiology and Biotechnology. 2015; 99(15), 6183–61 96, doi: 10.1007/s00253-015-6766-z.

Radha S. et al. Production and optimization of acid protease by Aspergillus spp. under submerged fermentation. Arch Appl Sci Res. 2011; 3(2), 155–63.

Ravindran R. et al. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering. 2018; 5(4), 93, doi: 10.3390/bioengineering 5040093.

Razzaq A. et al. Microbial Proteases Applications. Frontiers in Bioengineering and Biotechnology. 2019; (7), 110, doi: 10.3389/fbioe.2019.00110.

Rukmi I, Purwantisari S. The production of alkaline protease from Aspergillus flavus DUCC K225 on rice bran containing medium. Journal of Physics: Conference Series. 2020; 1524(1), 012058, doi: /1088/1742-659611524/1/012058.

Ryan MP, Walsh G. The biotechnological potential of whey. Reviews in Environmental Science and Bio/Technology. 2016; 15 (3), 479–498, doi: /10.1007/s11157-016-94 02-1.

Sharma KM. et al. Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering & Biotechnology. 2017; 15(1), 115–126, doi: 10.1016/j.jgeb.2017.02.001.

Sharma KM. et al. A Review on Microbial Alkaline Protease: An Essential Tool for Various Industrial Approaches. Industrial Biotechnology. 2019; 15, 69–78, doi: 10.1089/ind.20 18.0032.

Souza PM, et al. A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology. 2015; 46(2), 337–346, doi: /10.1590/S1517-838246220140359.

Spalatelu C. Biotechnological valorization of whey. Innovative Romanian Food Biotechnology. 2012; 10, 1.

Sudarkodi C, Sundar SK, Murugan M. Production and Optimization of Protease by Filamentous Fungus Isolated from Paddy Soil in Thiruvarur District Tamilnadu. J App Biol Biotech. 2015; 3(06), 066-069, doi: 10.7324/JABB.2015.3610.

Trindade MB, et al. Cheese whey exploitation in Brazil: a questionnaire survey. Food Science and Technology. 2019; 39(3), 788–791, doi: /10.1590/fst.07419.

Vamvakak IAN. et al. Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Engineering in Life Sciences. 2010; 10(4), 348–360, doi: /10.1002/elsc.201000063.

Wajeeha AW. et al. Production, Purification, and Characterization of Alkaline Protease from Aspergillus flavus and its Compatibility with Commercial Detergents. BioResources. 2021; 16(1), 291–301.

Mamo, J., Kangwa, M., Suarez Orellana, J.F. et al. Purification and Characterization of Aspartic Protease Produced from Aspergillus oryzae DRDFS13 MN726447 Under Solid-State Fermentation. Catal Lett 152, 2033–2046 (2022).

Pawar Kadambari Subhash, Singh Paras Nath, Singh Sanjay Kumar. Fungal alkaline proteases and their potential applications in different industries. Frontiers in Microbiology. VOL. 14 (2023).

Othman B., Sebo N H. Utilization of Some Agro Wests for the Production of Acid Protease by Aspergillus niger. Journal of Survey in Fisheries Sciences. 10(3S) 4319-4331 (2023).

Published

2025-04-26

How to Cite

dos Santos Marinho, J., de Campos Takaki, G. M., de Oliveira Franco, L., Barbosa de Lima, M. A., & Alves da Silva, C. A. (2025). THE Cheese whey as a sustainable substrate for protease production by Aspergillus sp. UCP 1290: Soro de queijo como substrato sustentável para produção de protease por Aspergillus sp. UCP 1290. Geama Journal - Environmental Sciences, 11(1), 12–17. Retrieved from https://www.journals.ufrpe.br/index.php/geama/article/view/7208