Biossolubilização de fontes fosfatadas por fungos do solo

Authors

DOI:

https://doi.org/10.24221/jeap.10.2.2025.6435.094-100

Keywords:

filamentous fungi, phosphorus

Abstract

Several soil microorganisms, including bacteria and fungi, have the ability to solubilize different forms of phosphates, increasing the availability of phosphorus (P) to plants. In the present study, the capacity and  potential for phosphate solubilization by fungi isolated from the rhizosphere of agroforestry and sugarcane cultivation areas were investigated. Forty specimens were quantitatively analyzed (in vitro) for the solubilization of phosphate sources. Of these, 13 were selected and tested to assess their ability to solubilize other sources in vitro: thermophosphate (TEF), simple superphosphate (SFS), Arad natural phosphate (FNA) and monoammonium phosphate (MAP). All specimens showed the potential to solubilize P sources and pH decrease  the pH of the liquid culture medium. Isolates FSP 18, FSP 22, FSP 24, FSP 28, FSP 30, CTN 69 and CTN 94 stood out for their efficiency in solubilizing various sources (60% for MAP, SFS and TEF, and 480% for FNA). Solubilization by fungi may offer an alternative for a more efficient utilization of these phosphate sources.

Downloads

Download data is not yet available.

References

Arias, R. M.; Abarca, G. H.; Rojas, Y.; de la Cruz Elizondo, Y. D. C. P.; Guzman, K. Y. G. 2023. Selection and characterization of phosphate-solubilizing fungi and their effects on coffee plantations. Plants, 12, (19), 3395. https://doi.org/10.3390/plants12193395

Bader, A. N.; Salerno, G. L.; Covacevich, F.; Consolo, V. F. 2020. Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). Journal of King Saud University, 32, 867-873. https://doi.org/10.1016/j.jksus.2019.04.002

Coutinho, F. P.; Felix, W. P.; Yano-Melo, A. M. 2012. Solubilization of phosphates in vitro by Aspergillus spp. and Penicillium spp. Ecological Engineering, 42, 85-89. https://doi.org/10.1016/j.ecoleng.2012.02.002

Ferreira, D. F. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039-1042. https://doi.org/10.1590/S1413-70542011000600001

França, D. V. C.; Kupper, K. C.; Magri, M. M. R.; Gomes, T. M.; Rossi, F. 2017. Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato. Pesquisa Agropecuária Tropical, 47, 360-368. https://doi.org/10.1590/1983-40632017v4746447

García-Berumen, J. A.; Torre, J. A. F. de L.; Santos-Villalobos, S.; Espinoza-Canales, A.; Echavarría-Cháirez, F. G.; Gutiérrez-Bañuelos, H. 2025. Phosphorus dynamics and sustainable agriculture: The role of microbial solubilization and innovations in nutrient management. Current Research in Microbial Sciences, 8, 100326. https://doi.org/10.1016/j.crmicr.2024.100326

Kang, S. C.; Pandey, P.; Khillon, R.; Maheshwari, D. K. 2018. Process of rock phosphate solubilization by Aspergillus sp. PS 104 in soil amended medium. Journal of Environmental Biology, 29, 743-746. https://www.jeb.co.in/journal_issues/200809_sep08/paper_17.pdf

Kaur, H.; Mir, R. A.; Hussain, S. J.; Prasad, B.; Kumar, P.; Aloo, B. N.; Sharma, C. M.; Dubey, R. C. 2024. Prospects of phosphate solubilizing microorganisms in sustainable agriculture. World Journal of Microbiology and Biotechnology, 40, 291. https://doi.org/10.1007/s11274-024-04086-9

Khan, M. S.; Zaidi, A.; Ahemad, M.; Oves, M.; Wani, P. A. 2010. Plant growth promotion by phosphate solubilizing fungi - current perspective. Archives of Agronomy and Soil Science, 56, 73-98. https://doi.org/10.1080/03650340902806469

Lei, Y.; Kuai, Y.; Guo, M.; Zhang, H.; Yuan, Y.; Hong, H. 2025. Phosphate-solubilizing microorganisms for soil health and ecosystem sustainability: a forty-year scientometric analysis (1984-2024). Frontiers Microbiology, 16, 1546852. https://doi.org/10.3389/fmicb.2025.1546852

Machado, V. J.; Souza, C. H. E.; Andrade, B. B.; Lana, R. M. Q.; Korndorfer, G. H. 2021. Availability curves of phosphorus in soils with different textures after application of increasing doses of monoammonium phosphate. Bioscience Journal, 27, 70-76. https://docs.bvsalud.org/biblioref/2018/09/911738/cruvas-de-disponibilidade-de-fosforo-em-solos-com-diferentes-te_ihVVpat.pdf

Meyer, M. C.; Mazaro, S. M.; Silva, J. C. 2019. Trichoderma uso na agricultura. Embrapa, Brasília. 538p.

Mittal, V.; Singh, O.; Nayyar, H.; Kaur, J.; Tewari, R. 2018. Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield. Soil Biology and Biochemistry, 40, 718-727. https://doi.org/10.1016/j.soilbio.2007.10.008

Prabhu, N.; Borkar, S.; Garg, S. 2019. Phosphate solubilization by microorganisms: Overview, mechanisms, applications and advances. Advances in Biological Science Research, pp. 161-176. https://doi.org/10.1016/B978-0-12-817497-5.00011-2

Sharma, K.; Dak, G.; Agrawal, A.; Bhatnagar, M.; Sharma, R. 2007. Effect of phosphate solubilizing bactéria on the germination of Cicer arietinum seeds and seedling growth. Journal of Herbal Medicine and Toxicology, 1, 61-63. https://www.researchgate.net/publication/265989170_effect_of_phosphate_solubilizing_bacteria_on_the_germination_of_cicer_arietinum_seeds_and_seedling_growth_j_herb_med_toxicol_161-63

Souchie, E. L.; Abboud, A. C. S.; Caproni, A. L. 2007. Solubilização de fosfato in vitro por microrganismos rizosféricos de Guandu. Biosciencie Journal, 23, 53-60. https://seer.ufu.br/index.php/biosciencejournal/article/view6618/4351

Ribas, P. P.; Rech, R.; Matsumura, A. T. S.; Van Der Sand, S. T. 2016. Potencial in vitro para solubilização de fosfato por Trichoderma spp. Revista Brasileira de Biociências, 14, 70-75. https://seer.ufrgs.br/index.php/rbrasbioci/article/view/114682

Tavares, M. F. F.; Harbeli Jr., C. 2011. O mercado de fertilizantes no Brasil e as influências mundiais. 15p. https://10.13140/RG.2.1.3326.0562

Tedesco, M. J.; Gianello, C.; Bissani, C. A.; Bohnen, H.; Volkweiss, S. J. 1995. Análises de solo, plantas e outros materiais, 2 ed. Universidade Federal do Rio Grande do Sul, Porto Alegre. 174p.

Torres-Cuesta, D.; Mora-Motta, D.; Chavarro-Bermeo, J. P.; Olaya-Montes, A.; Vargas-Garcia, C.; Bonilla, R.; Estrada-Bonilla, G. 2023. Phosphate-solubilizing bacteria with low-solubility fertilizer improve soil P availability and yield of kikuyu grass. Microorganisms, 11, 1748. https://doi.org/10.3390/microorganisms11071748

Wagner, C. A. 2024. The basics of phosphate metabolism. Nephrology Dialysis Transplantation, 39, 190-201. https://doi.org/10.1093/ndt/gfad188

Yadav, J.; Verma, J. P.; Tiwari, K. N. 2016. Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian Journal of Biological Sciences, 04, 291-299. https://scialert.net/abstract/?doi=ajbs.2011.291.299

Yin, Z.; Fan, B.; Roberts, D. P.; Chen, S.; Shi, F.; Buyer, J. S.; Jiang, H. 2017. Enhancement of maize growth and alteration of the rhizosphere microbial community by phosphate-solubilizing fungus Aspergillus aculeatus P93. Journal of Agriculture Biotechnology, 4, 2-12. http://dx.doi.org/10.20936/JAB/170201

Zorb, C.; Senbayram, M.; Peiter, E. 2014. Potassium in agriculture - Status and perspectives. Journal of Plant Physiology, 171, 656-669. https://doi.org/10.1016/j.jplph.2013.08.008

Published

2025-06-26

How to Cite

Coutinho, F. P., & Araújo, B. G. P. (2025). Biossolubilização de fontes fosfatadas por fungos do solo. Journal of Environmental Analysis and Progress, 10(2), 094–100. https://doi.org/10.24221/jeap.10.2.2025.6435.094-100

Issue

Section

Scientific Note - Nota Científica