Systematic Review: challenges and limitations for circular economy in sustainable agriculture

Authors

DOI:

https://doi.org/10.24221/jeap.10.4.2025.6954.263-275

Keywords:

Sustainable model, circular economy, agroindustry/agriculture waste

Abstract

The way society produces and consumes has significantly impacted natural resources due to exacerbated extraction, in addition, the process of transforming the extracted raw materials generates the emission of pollutants on the planet. Therefore, when we think about the current model of extraction, production, consumption, and disposal in nature (linear economy), we can see the importance of creating a sustainable model that makes it possible to preserve natural resources and reduce the effects caused by consumption patterns. performed. In this sense, the objective was to carry out a systematic review on a global scale to understand the challenges and limitations in understanding the circular economy applied in agriculture. The methodology followed the criteria for preparing a systematic review, with the extraction of scientific articles published on digital platforms. Some challenges and limitations for implementing the circular economy in agricultural waste management have become evident, including the need for more research and technologies in biomass production, participation of governments in the adoption of public policies, and social participation. Considering this, the study showed the need to make environmental issues the main focus in the process of changing to a sustainable management model.

Downloads

Download data is not yet available.

Author Biographies

Robério Satyro dos Santos Júnior, Federal University of Sergipe

PhD candidate responsible for the research.

Roberto Rodrigues de Souza, Federal University of Sergipe

Advisor in the development of research.

Alberto Wisniewski Júnior, Federal University of Sergipe

Co-supervisor in research development.

References

Abdelaal, A.; Pradhan, S.; Alnouss, A.; Tong, Y.; Al-Ansari, T.; McKay, G.; Mackey, H. R. 2021. The impact of pyrolysis conditions on orange peel biochar physicochemical properties for sandy soil. Waste Management & Research, 39, (7), 995-1004. https://doi.org/10.1177/0734242X20978456

Adami, L.; Schiavon, M. 2021. From circular economy to circular ecology: a review on the solution of environmental problems through circular waste management approaches. Sustainability, 13, (2), 925. https://doi.org/10.3390/su13020925

Aguiñaga, E.; Henriques, I.; Scheel, C.; Scheel, A. 2018. Construindo resiliência: uma abordagem comunitária autossustentável para o triple bottom line. Journal of Cleaner Production, 173, 186-196. https://doi.org/10.1016/j.jclepro.2017.01.094

Antoniou, N.; Monlau, F.; Sambusiti, C.; Ficara, E.; Barakat, A.; Zabaniotou, A. 2019. Contribution to Circular Economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery. Journal of Cleaner Production, 209, 505-514. https://doi.org/10.1016/j.jclepro.2018.10.055

Arora, S.; Jung, J.; Liu, M.; Li, X.; Goel, A.; Chen, J.; Wang, C. H. 2021. Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore. Science of the Total Environment, 781, 146573. https://doi.org/10.1016/j.scitotenv.2021.146573

ABRELPE. Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. 2019. Panorama dos Resíduos Sólidos no Brasil. São Paulo. file:///C:/Users/Win10/Downloads/PanoramaAbrelpe_-2018_2019%20(1).pdf.

Azevedo, J. L. 2015. A Economia Circular Aplicada no Brasil: uma análise a partir dos instrumentos legais existentes para a logística reversa. In: XI Congresso Nacional de Excelência em gestão, V. 13. pp. 1984-9354.

Barrow, C. J. 2012. Biochar: potential for countering land degradation and for improving agriculture. Geografia Aplicada, 34, 21-28. https://doi.org/10.1016/j.apgeog.2011.09.008

Brasil. 2010. Lei n° 12.305, de 2 de agosto de 2010. Institui a Política Nacional dos Resíduos Sólidos. Diário Oficial da União.

Brasil. 2022a. Ministério da Integração do Desenvolvimento Regional. Rota da Economia Circular. Brasília. Disponível em: https://www.gov.br/mdr/pt-br/assuntos/desenvolvimento-regional/rotas-de-integracao-nacional/rota-da-economia-circular. Acesso em: 3 de abril de 2023.

Brasil. 2022b. Ministério do Meio Ambiente. Plano Nacional de Resíduos Sólidos. Brasília. https://portal-api.sinir.gov.br/wp-content/uploads/2022/07/Planares-B.pdf.

Brasil. 2022c. Ministério da Agricultura, Pecuária e Abastecimento Agricultura Familiar. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/agricultura-familiar/agricultura-familiar-1. Acesso em: 18 de outubro de 2022.

Construcía. 2020. Que países lideram a mudança na economia circular. Disponível em: https://www.construcia.com/pt/noticias/que-paises-lideram-a-mudanca-na-economia-circular/. Acesso em: 10/02/2023.

Duan, Y.; Pandey, A.; Zhang, Z.; Awasthi, M. K.; Bhatia, S. K.; Taherzadeh, M. J. 2020. Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Culturas e produtos industriais, 153, 112568. https://doi.org/10.1016/j.indcrop.2020.112568

Dybå, T.; Dingsøyr, T. 2008. Empirical studies of agile software development: a systematic review. Information and Software Technology, 50, (9), 833-859. https://doi.org/10.1016/j.infsof.2008.01.006

Enaime, G.; Wichern, M. E.; Lübken, M. 2023. Contribution of biochar application to the promotion of circular economy in agriculture. Frontiers in Agronomy, 5, 1214012. https://doi.org/10.3389/fagro.2023.1214012

Fytili, D. E.; Zabaniotou, A. 2018. Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: a review. Current Sustainable/Renewable Energy Reports, 5, 150-155. https://doi.org/10.1007/s40518-018-0109-5

Fontes, A. V.; João, I. M.; Silva, J. M. 2021. Multicriteria evaluation of biomass residues in Portugal to second generation bioethanol production. Produção, 31e20210060, 2001. https://doi.org/10.1590/0103-6513.20210060

Forfora, N.; Azuaje, I.; Vivas, K. A.; Vera, R. E.; Brito, A.; Venditti, R.; Gonzalez, R. 2024. Evaluating biomass sustainability: Why below-ground carbon sequestration matters. Journal of Cleaner Production, 439, 140677. https://doi.org/10.1016/j.jclepro.2024.140677

Foster, A.; Roberto, S. S.; Igari, A. T. 2016. Economia circular e resíduos sólidos: uma revisão sistemática sobre a eficiência ambiental e econômica. Anais do Encontro Internacional Sobre Gestão Empresarial e Meio Ambiente. São Paulo. https://engemausp.submissao.com.br/18/anais/arquivos/115.pdf

Galinato, S. P.; Yoder, J. K.; Granatstein, D. 2011. The economic value of biochar in crop production and carbon sequestration. Política energética, 39, (10), 6344-6350. https://doi.org/10.1016/j.enpol.2011.07.035

Gross, C. D.; Bork, E. W.; Carlyle, C. N.; Chang, S. X. 2022. Biochar and its manure-based feedstock have divergent effects on soil organic carbon and greenhouse gas emissions in croplands. Science of the Total Environment, 806, 151337. https://doi.org/10.1016/j.scitotenv.2021.151337

Hu, Q.; Jung, J.; Chen, D.; Leong, K.; Song, S.; Li, F.; Wang, C. H. 2021. Biochar industry to circular economy. Science of The Total Environment, 757, 143820. https://doi.org/10.1016/j.scitotenv.2020.143820

Jindo, K.; Audette, Y.; Higashikawa, F. S.; Silva, C. A.; Akashi, K., Mastrolonardo, G.; Mondini, C. 2020. Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Tecnologias Químicas e Biológicas na Agricultura, 7, 1-12. https://doi.org/10.1186/s40538-020-00182-8

Jindo, K.; Audette, Y.; Higashikawa, F. S.; Silva, C. A.; Akashi, K., Mastrolonardo, G.; Mondini, C. 2020. Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the functions of biochar in growing media, composting and as a soil improver. Tecnologias Químicas e Biológicas na Agricultura, 7, 1-12. https://doi.org/10.1186/s40538-020-00182-8

Kumar, A.; Bhattacharya, T.; Shaikh, W. A.; Biswas, J. K. 2024. Valorization of invasive plant and leaf litter wastes into biochar: Production, properties and potential for arsenic removal. Groundwater for Sustainable Development, 24, 101066. https://doi.org/10.1016/j.gsd.2023.101066

Kurniawan, T. A.; Othman, M. H. D.; Liang, X.; Goh, H. H.; Gikas, P.; Chong, K. K.; Chew, K. W. 2023. Challenges and opportunities for biochar to promote circular economy and carbon neutrality. Journal of Environmental Management, 332, 117429. https://doi.org/10.1016/j.jenvman.2023.117429

Lee, J. T.; Ok, Y. S.; Song, S.; Dissanayake, P. D.; Tian, H.; Tio, Z. K.; Tong, Y. W. 2021. Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment. Bioresource Technology, 333, 125190. https://doi.org/10.1016/j.biortech.2021.125190

Lyu, H.; Lim, J. Y.; Zhang, Q.; Senadheera, S.; Zhang, C.; Huang, Q.; Ok, Y. S. 2023. Conversion of organic solid waste into energy and functional materials using biochar catalyst: Bibliometric analysis, research progress, and directions. Applied Catalysis B: Environmental, 340, 123223. https://doi.org/10.1016/j.apcatb.2023.123223

Lima, T.; Dias, A. 2023. Os países e as questões alimentares na COP 27: uma análise das declarações oficiais na Conferência das Partes da Convenção-Quadro das Nações Unidas sobre a Mudança do Clima (UNFCCC) em Sharm El-Sheik. Segurança Alimentar e Nutricional, 30, e023030-e023030. https://doi.org/10.20396/san.v30i00.8674039

Lima, P.; Morais, M. F.; Constantino, M. A.; Paulo, P. L.; Magalhães Filho, F. J. C. 2021. Environmental assessment of waste handling in rural Brazil: Improvements towards circular economy. Cleaner Environmental Systems, 2, 100013. https://doi.org/10.1016/j.cesys.2021.10001

Mona, S.; Malyan, S. K.; Saini, N.; Deepak, B.; Pugazhendhi, A.; Kumar, S. S. 2021. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere, 275, 129856. https://doi.org/10.1016/j.chemosphere.2021.129856

Microsoft Project for Windows. 2013. Versão 4.1. [S. l.]: Microsoft Corporation.

Netzero. 2023. Você sabe quem é a NetZero? Disponível em: https://www.instagram.com/p/CpP2yAGu9kL/?igsh=cmM4anNwcWtncnF2. Acesso em: 22/02/2024.

Ngoc-Dan Cao, T.; Mukhtar, H.; Yu, C. P.; Bui, X. T.; Pan, S. Y. 2022. Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2022.112965

Oliveira, G. F.; Kalid, R. A.; Souza, M. E. 2017. O Conceito Enade no Âmbito das Pesquisas Acadêmicas sobre os Cursos de Engenharia de Produção. XXXVII ENEGEP. Disponível em: https://www.abepro.org.br/biblioteca/TN_STO_247_428_32794.pdf. Acesso em: 2 de janeiro de 2023.

ONU. Organizações das Nações Unidas. 2020. Transformando Nosso Mundo: a Agenda 2030 para o Desenvolvimento Sustentável. 59p. Disponível em: https://www.mds.gov.br/webarquivos/publicacao/Brasil_Amigo_Pesso_Idosa/Agenda2030.pdf. Acesso em: 10/02/2023.

Rashid, M. I.; Shahzad, K. 2021. Food waste recycling for compost production and its economic and environmental assessment as circulares economy indicators of solid waste management. Journal of Cleaner Production, 317, 128467. https://doi.org/10.1016/j.jclepro.2021.128467

Ravindra, K.; Singh, T.; Mor, S. 2019. Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of Cleaner Production, 208, 261-273. https://doi.org/10.1016/j.jclepro.2018.10.031

Rentizelas, A.; Shpakova, A.; Mašek, O. 2018. Designing an optimized supply network for the sustainable conversion of agricultural plastic waste into higher-value products. Journal of Cleaner Production, 189, 683-700. https://doi.org/10.1016/j.jclepro.2018.04.104

Rex, P.; Ismail, K. R.; Meenakshisundaram, N.; Barmavatu, P.; Bharadwaj, A. V. S. L. 2023. Agricultural Biomass Waste to Biochar: A Review on Biochar Applications Using Machine Learning Approach and Circular Economy. ChemEngineering, 7, (3), 50. https://doi.org/10.3390/chemengineering7030050

Rezende, E. I.; Angelo, L. C.; Santos, S. S.; Mangrich, A. S. 2011. Biocarvão (biochar) e sequestro de carbono. Revista virtual de química, 3, (5), 426-433. http://dx.doi.org/10.5935/1984-6835.20110046

Rueangsan, K.; Kraisoda, P.; Heman, A.; Tasarod, H.; Wangkulangkool, M.; Trisupakitti, S.; Morris, J. 2021. Bio-oil and char obtained from cassava rhizomes with soil conditioners by fast pyrolysis. Heliyon, 7, (11), e08291. https://doi.org/10.1016/j.heliyon.2021.e08291

Suárez, Y.; García, L.; Hernández Nariño, A.; Saiz, L.; Cossío, N.; León, M. 2023. Una aproximación a la economía circular y su contribución en el contexto de la pandemia. http://scielo.sld.cu/pdf/infd/n40/1996-3521-infd-40-e1336.pdf

Sandoval, V. P.; Jaca, C.; Ormazabal, M. 2017. Economía circular. Memoria Investigaciones en Ingeniería, 15, 85-95. https://revistas.um.edu.uy/index.php/ingenieria/article/view/308.

Santos Jr., R. S.; Souza, R. R. 2023. Panorama dos impactos causados pelo descarte inadequado dos resíduos sólidos na biodiversidade. Journal of Environmental Analysis and Progress, 8, (2), 062-069. https://doi.org/10.24221/jeap.8.2.2023.5284.062-069

Shin, J.; Park, D.; Hong, S.; Jeong, C.; Kim, H.; Chung, W. 2021. Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L.) production. Poluição Ambiental, 285, 117457. https://doi.org/10.1016/j.envpol.2021.117457

Silva, C. 2020. Por que as empresas adotam a economia circular. Retomada Verde. Estadão. Disponível em: https://www.estadao.com.br/infograficos/economia,por-que-mais-empresas-apostam-na-economia-circular,1117170. Acesso em: 20 de out. de 2023.

Singh, J.; Verma, M. 2023. Waste derived modified biochar as promising functional material for enhanced water remediation potential. Environmental Research, 117999. https://doi.org/10.1016/j.envres.2023.117999

Sridhar, A.; Kapoor; A., Kumar; P. S.; Ponnuchamy, M.; Balasubramanian, S.; Prabhakar, S. 2021. Conversion of food waste to energy: a focus on sustainability and life cycle assessment. Fuel, 302, 121069. https://doi.org/10.1016/j.fuel.2021.121069

Sroufe, R.; Watts, A. 2022 Pathways to agricultural decarbonization: Climate change obstacles and opportunities in the US. Recursos, Conservação e Reciclagem, 182, 106276. https://doi.org/10.1016/j.resconrec.2022.106276

Van Der Velden, R.; Fonseca-Zang, W.; Zang, J.; Clyde-Smith, D.; Leandro, W. M.; Parikh, P.; Campos, L. C. 2022. Closed-loop organic waste management systems for family farmers in Brazil. Tecnologia Ambiental, 43, (15), 2252-2269. https://doi.org/10.1080/09593330.2021.1871660

Wordcloud. 2024. Versão 2008. Zygomatic. Disponível em: https://classic.wordclouds.com. Acesso em: 15 de fevereiro de 2024.

Yrjälä, K.; Ramakrishnan, M.; Salo, E. 2022. Agricultural waste streams as resource in circular economy for biochar production towards carbon neutrality. Current opinion in environmental science & health, 26, 100339. https://doi.org/10.1016/j.coesh.2022.100339

Zabaniotou, A.; Rovas, D.; Libutti, A.; Monteleone, M. 2015. Boosting circular economy and closing the loop in agriculture: Case study of a small-scale pyrolysis-biochar based system integrated in an olive farm in symbiosis with an olive mill. Environmental Development, 14, 22-36. https://doi.org/10.1016/j.envdev.2014.12.002

Published

2025-12-29

How to Cite

Santos Júnior, R. S. dos, Souza, R. R. de, & Wisniewski Júnior, A. (2025). Systematic Review: challenges and limitations for circular economy in sustainable agriculture. Journal of Environmental Analysis and Progress, 10(4), 263–275. https://doi.org/10.24221/jeap.10.4.2025.6954.263-275