Evaluation of microporosity and density of carbonate rocks using gamma-ray and X-ray computed tomography techniques

Autores

  • Wellington da Silva Carvalho Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0003-4438-4424
  • Daniel Milian Pérez Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-3172-0508
  • Abel Gámez Rodríguez Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-1584-6768
  • Yaicel Ge Proenza Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0003-3894-8326
  • Patrício Luiz de Andrade Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-8245-4123
  • Daniel Amancio Duarte Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0003-3368-910X
  • Márcio Fernando Paixão de Brito Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-7644-1035
  • Cássia Bezerra Machado Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0001-9993-0678
  • Raquel Milani Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0001-8076-6118
  • Antonio Celso Dantas Antonino Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-4120-9404

DOI:

https://doi.org/10.24221/jeap.10.4.2025.7451.250-262

Palavras-chave:

Computed Tomography, gamma transmission, X-ray microtomography, carbonate rocks, porosity, density

Resumo

Computed Tomography (CT) techniques have emerged as a promising non-destructive method to analyze the physical properties of rocks and porous media. CT techniques provide quantitative and qualitative information without disturbing the internal structure of the samples, which is a significant advantage for studies focused on understanding subsurface characteristics. This study investigated the potential and application of gamma-ray computed tomography (y-CT) and X-ray microtomography (XR-uCT) for characterizing the microporosity and density of rocks, specifically carbonate rocks. Accurate characterization of these properties is crucial for evaluating water reservoir potentials, understanding geological formations, and assessing environmental impacts. The research aimed to validate the accuracy of both techniques and assess the feasibility of using a single XR-?CT projection to determine physical properties, potentially reducing computational demands. Validation involved samples with homogeneous, known composition, determining density and mass attenuation coefficients with both techniques, and comparing results to literature values. ?-CT achieved accuracy within 1.86%, while single-projection XR-?CT showed relative differences up to 10.65%. Subsequently, three carbonate rock samples were analyzed using XR-?CT with an average of four projections, improving accuracy over the single-projection method. Results from both CT techniques and literature values were compared, with ?-CT measuring parameters showing a relative difference of up to 4.58%, and the four-projection XR-?CT demonstrating strong accuracy. Relative differences in ?-CT were generally higher than XR-?CT, confirming the four-projection approach's significant improvements.

Downloads

Não há dados estatísticos.

Referências

Abbasi, G. R.; Arif, M.; Isah, A.; Ali, M.; Mahmoud, M.; Hoteit, H.; Keshavarz, A.; Iglauer, S. 2022. Gas hydrate characterization in sediments via x-ray microcomputed tomography. Earth-Science Rev., 234, 104233. https://doi.org/10.1016/j.earscirev.2022.104233

Abdullah, J.; Cassanello, M. C. F.; Dudukovic, M. P.; Dyakowski, T.; Hamada, M. M.; Jin, J. H.; Johansen, G. A.; Kim, J. B.; Legoupil, S. A.; Maad, R.; Mesquita, C.; Nowakowski, J.; Ramirez-Garcia, F. P.; Sankowski, D.; Sipaun, S. M.; Thyn, J. 2008. Industrial Process Gamma Tomography. IAEA-TECDOC-1589. pp. 1-153.

Al-Tersawy, S. H.; El-Sadany, R. A.; Sallam, H. E. M. 2021. Experimental gamma-ray attenuation and theoretical optimization of barite concrete mixtures with nanomaterials against neutrons and gamma rays. Constr. Build. Mater., 289, 123190. https://doi.org/10.1016/j.conbuildmat.2021.123190

Al-Yaseri, A.; Rizwanullah Hussaini, S.; Fatah, A.; Al-Qasim, A. S.; Patil, P. D. 2024. Computerized tomography analysis of potential geochemical reactions of carbonate rocks during underground hydrogen storage. Fuel, 361, 130680. https://doi.org/10.1016/j.fuel.2023.130680

An, R.; Wang, Y.; Zhang, X.; Chen, C.; Liu, X.; Cai, S. 2023. Quantitative characterization of drying-induced cracks and permeability of granite residual soil using micron-sized X-ray computed tomography. Sci. Total Environ., 876, 163213. https://doi.org/10.1016/j.scitotenv.2023.163213

Berger, M. J.; Hubbell, J. H.; Seltzer, S. M.; Chang, J.; Coursey, J. S.; Sukumar, R.; Zucker, D. S.; Olsen, K. 2010. XCOM: Photon Cross Section Database (version 1.5). Available at: http://physics.nist.gov/xcom. Accessed at: 5.23.24).

Bjørnstad, T. 2021. Modern Industry: Gamma Methods for Materials Testing and Inspection. In: Autor. Encyclopedia of Nuclear Energy. Elsevier, pp. 345-371. https://doi.org/10.1016/B978-0-12-819725-7.00142-2

Chirol, C.; Carr, S. J.; Spencer, K. L.; Moeller, I. 2021. Pore, live root and necromass quantification in complex heterogeneous wetland soils using X-ray computed tomography. Geoderma, 387, 114898. https://doi.org/10.1016/j.geoderma.2020.114898

Cloete, K. J.; Šmit, Ž.; Minnis-Ndimba, R.; Vavpeti?, P.; du Plessis, A.; le Roux, S. G.; Pelicon, P. 2019. Physico-elemental analysis of roasted organic coffee beans from Ethiopia, Colombia, Honduras, and Mexico using X-ray micro-computed tomography and external beam particle induced X-ray emission. Food Chemistry: X, 2, 100032. https://doi.org/10.1016/j.fochx.2019.100032

Dantas, C. C.; Melo, S. B.; Oliveira, E. F.; Simões, F. P. M.; Santos, M. G.; Santos, V. A. 2008. Measurement of density distribution of a cracking catalyst in experimental riser with a sampling procedure for gamma ray tomography. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 266, 841-848. https://doi.org/10.1016/j.nimb.2008.01.029

Fonseca, A. C. G.; Costa, L. F.; Dantas, C. C.; Heck, R. J.; Melo, S. B.; Antonino, A. C. D.; Barbosa, E. S. 2019. Precise determination of soil structure parameters in a X-ray and ?-ray CT combination methodology. Prog. Nucl. Energy, 114, 138-144. https://doi.org/10.1016/j.pnucene.2019.02.007

Freire, L.; Lima, J. S.; Veríssimo, C. U.; Vicente, da S. 2017. Carste em Rochas Não Carbonáticas: contribuição ao estudo geomorfológico em cavernas de arenito da Amazônia Paraense. Rev. Bras. Geogr. Física, 10, 1829-1845.

Galkin, S. V.; Martyushev, D.A.; Osovetsky, B.M.; Kazymov, K.P.; Song, H. 2022. Evaluation of void space of complicated potentially oil-bearing carbonate formation using X-ray tomography and electron microscopy methods. Energy Reports, 8, 6245-6257. https://doi.org/10.1016/j.egyr.2022.04.070

Geiger, J.; Hunyadfalvi, Z.; Bogner, P. 2009. Analysis of small-scale heterogeneity in clastic rocks by using computerized X-ray tomography (CT). Eng. Geol., 103, 112-118. https://doi.org/10.1016/j.enggeo.2008.06.011

Giamas, V.; Koutsovitis, P.; Sideridis, A.; Turberg, P.; Grammatikopoulos, T.A.; Petrounias, P.; Giannakopoulou, P. P.; Koukouzas, N.; Hatzipanagiotou, K. 2022. Effectiveness of X-ray micro-CT applications upon mafic and ultramafic ophiolitic rocks. Micron, 158, 103292. https://doi.org/10.1016/j.micron.2022.103292

Gurin, G.; Ilyin, Y.; Nilov, S.; Ivanov, D.; Kozlov, E.; Titov, K. 2018. Induced polarization of rocks containing pyrite: Interpretation based on X-ray computed tomography. J. Appl. Geophys., 154, 50-63. https://doi.org/10.1016/j.jappgeo.2018.04.019

Jacobs, P.; Cnudde, V. 2009. ‘Applications of X-ray computed tomography in engineering geology’ or ‘looking inside rocks ….’. Eng. Geol., 103, 67-68. https://doi.org/10.1016/j.enggeo.2008.12.001

Khudhur, F. W. K.; MacDonald, J. M.; Daly, L.; Macente, A.; Spruženiece, L.; Griffin, S.; Wilson, C. 2023. Microstructural analysis of slag properties associated with calcite precipitation due to passive CO2 mineralization. Micron, 174, 103532. https://doi.org/10.1016/j.micron.2023.103532

León-Quinto, T.; Madrigal, R.; Cabello, E.; Fimia, A.; Serna, A. 2024. Morphological and biochemical responses of a neotropical pest insect to low temperatures. J. Therm. Biol., 119, 103795. https://doi.org/10.1016/j.jtherbio.2024.103795

Martinez-Garcia, J.; Stelzner, I.; Stelzner, J.; Gwerder, D.; Schuetz, P. 2021. Automated 3D tree-ring detection and measurement from X-ray computed tomography. Dendrochronologia, 69, 125877. https://doi.org/10.1016/j.dendro.2021.125877

Martínez-Martínez, J.; Fusi, N.; Galiana-Merino, J. J.; Benavente, D.; Crosta, G. B. 2016. Ultrasonic and X-ray computed tomography characterization of progressive fracture damage in low-porous carbonate rocks. Eng. Geol., 200, 47-57. https://doi.org/10.1016/j.enggeo.2015.11.009

Martyushev, D. A.; Chalova, P. O.; Davoodi, S.; Ashraf, U. 2023a. Evaluation of facies heterogeneity in reef carbonate reservoirs: A case study from the oil field, Perm Krai, Central-Eastern Russia. Geoenergy Sci. Eng., 227, 211814. https://doi.org/10.1016/j.geoen.2023.211814

Martyushev, D. A.; Davoodi, S.; Kadkhodaie, A.; Riazi, M.; Kazemzadeh, Y.; Ma, T. 2024. Multiscale and diverse spatial heterogeneity analysis of void structures in reef carbonate reservoirs. Geoenergy Sci. Eng., 233, 212569. https://doi.org/10.1016/j.geoen.2023.212569

Martyushev, D. A.; Galkin, S. V.; Shelepov, V. V. 2019. The Influence of the Rock Stress State on Matrix and Fracture Permeability under Conditions of Various Lithofacial Zones of the Tournaisian–Fammenian Oil Fields in the Upper Kama Region. Moscow Univ. Geol. Bull., 74, 573-581. https://doi.org/10.3103/S0145875219060061

Martyushev, D. A.; Ponomareva I. N.; ?sovetsky B. M.; ?azymov K. P.; ?omilina ?. ?.; Lebedeva ?. S.; Chukhlov ?. S. 2022. Study of the structure and development of oil deposits in carbonate reservoirs using field data and X-ray microtomography. Georesursy, 24, 114-124. https://doi.org/10.18599/grs.2022.3.10

Martyushev, D. A.; Ponomareva, I. N.; Chukhlov, A. S.; Davoodi, S.; Osovetsky, B. M.; Kazymov, K. P.; Yang, Y. 2023b. Study of void space structure and its influence on carbonate reservoir properties: X-ray microtomography, electron microscopy, and well testing. Mar. Pet. Geol., 151, 106192. https://doi.org/10.1016/j.marpetgeo.2023.106192

Melo, A. C.; Bettiol, G.; Barbosa, L.; Augusto, I.; Eyji, E. 2023. Susceptibilidade à erosão, perda de solos e vulnerabilidade natural na bacia do Médio Rio Araguaia - Brasil. Rev. Bras. Geogr. Física, 16, 3103-3124.

Müter, D.; Pedersen, S.; Sørensen, H. O.; Feidenhans’l, R.; Stipp, S. L. S. 2012. Improved segmentation of X-ray tomography data from porous rocks using a dual filtering approach. Comput. Geosci., 49, 131-139. https://doi.org/10.1016/j.cageo.2012.06.024

Nova, A. A. V. 2020. Quantificação da Porosidade em Rochas Calcárias por Meio de Tomografia Computadorizada de Raios X e de Raios Gama. Universidade Federal de Pernambuco. 82p.

Paula, R. T.; Rocha, C. G. 2021. Caracterização Física e Mineralógica de Materiais Intempéricos na Área Urbana de Juiz de Fora – MG, através de Análise Macroscópica, Difratômetro de Raios-X (DRX) e Microscópio Eletrônico de Varredura (MEV). Rev. Bras. Geogr. Física, 14, 1787-1804.

Peak, D. 2023. Fourier transform infrared spectroscopic methods of soil analysis. In: AUTOR. Encyclopedia of Soils in the Environment. Elsevier, pp. 510-518. https://doi.org/10.1016/B978-0-12-822974-3.00230-5

Peters, E. J.; Afzal, N. 1992. Characterization of heterogeneities in permeable media with computed tomography imaging. J. Pet. Sci. Eng., 7, 283-296. https://doi.org/10.1016/0920-4105(92)90024-U

Poludniowski, G.; Landry, G.; DeBlois, F.; Evans, P. M.; Verhaegen, F. 2009. SpekCalc?: a program to calculate photon spectra from tungsten anode x-ray tubes. Phys. Med. Biol., 54, N433-N438. https://doi.org/10.1088/0031-9155/54/19/N01

Rahner, M. S.; Halisch, M.; Fernandes, C. P.; Weller, A.; Sampaio, S. S. V. 2018. Fractal dimensions of pore spaces in unconventional reservoir rocks using X-ray nano- and micro-computed tomography. J. Nat. Gas Sci. Eng., 55, 298-311. https://doi.org/10.1016/j.jngse.2018.05.011

Saadat, K.; Rahimpour-Bonab, H. 2023. Lithology determination and petrophysical rock typing of sedimentary rocks using X-ray tomography. Geoenergy Sci. Eng., 231, 212397. https://doi.org/10.1016/j.geoen.2023.212397

Santos, V. A.; Dantas, C. C.; Luna-Finkler, C. L.; Souza, J. E. G. 2011. Principal component analysis in an experimental cold flow model of a fluid catalytic cracking unit by gammametry. Prog. Nucl. Energy, 53, 1114-1118. https://doi.org/10.1016/j.pnucene.2011.06.008

Sturrock, C. J. 2023. Non-invasive imaging of soil processes. In: Goss, M. J.; Oliver, M. (Eds.) Encyclopedia of Soils in the Environment. Elsevier, pp. 459-468. https://doi.org/10.1016/B978-0-12-822974-3.00151-8

Tötzke, C.; Kozhuharova, B.; Kardjilov, N.; Lenoir, N.; Manke, I.; Oswald, S. E. 2024. Non-invasive 3D analysis of microplastic particles in sandy soil - Exploring feasible options and capabilities. Sci. Total Environ., 907, 167927. https://doi.org/10.1016/j.scitotenv.2023.167927

Van Geet, M.; Swennen, R.; Wevers, M. 2000. Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography. Sediment. Geol. 132, 25-36. https://doi.org/10.1016/S0037-0738(99)00127-X

Volume Graphics GmbH, 2020. VGSTUDIO MAX 3.4 Reference Manual. 34p.

Downloads

Publicado

2025-12-27

Como Citar

Carvalho, W. da S., Pérez, D. M., Rodríguez, A. G., Proenza, Y. G., Andrade, P. L. de, Duarte, D. A., … Antonino, A. C. D. (2025). Evaluation of microporosity and density of carbonate rocks using gamma-ray and X-ray computed tomography techniques. Journal of Environmental Analysis and Progress, 10(4), 250–262. https://doi.org/10.24221/jeap.10.4.2025.7451.250-262