Evaluation of microporosity and density of carbonate rocks using gamma-ray and X-ray computed tomography techniques
DOI:
https://doi.org/10.24221/jeap.10.4.2025.7451.250-262Palavras-chave:
Computed Tomography, gamma transmission, X-ray microtomography, carbonate rocks, porosity, densityResumo
Computed Tomography (CT) techniques have emerged as a promising non-destructive method to analyze the physical properties of rocks and porous media. CT techniques provide quantitative and qualitative information without disturbing the internal structure of the samples, which is a significant advantage for studies focused on understanding subsurface characteristics. This study investigated the potential and application of gamma-ray computed tomography (y-CT) and X-ray microtomography (XR-uCT) for characterizing the microporosity and density of rocks, specifically carbonate rocks. Accurate characterization of these properties is crucial for evaluating water reservoir potentials, understanding geological formations, and assessing environmental impacts. The research aimed to validate the accuracy of both techniques and assess the feasibility of using a single XR-?CT projection to determine physical properties, potentially reducing computational demands. Validation involved samples with homogeneous, known composition, determining density and mass attenuation coefficients with both techniques, and comparing results to literature values. ?-CT achieved accuracy within 1.86%, while single-projection XR-?CT showed relative differences up to 10.65%. Subsequently, three carbonate rock samples were analyzed using XR-?CT with an average of four projections, improving accuracy over the single-projection method. Results from both CT techniques and literature values were compared, with ?-CT measuring parameters showing a relative difference of up to 4.58%, and the four-projection XR-?CT demonstrating strong accuracy. Relative differences in ?-CT were generally higher than XR-?CT, confirming the four-projection approach's significant improvements.Downloads
Referências
Abbasi, G. R.; Arif, M.; Isah, A.; Ali, M.; Mahmoud, M.; Hoteit, H.; Keshavarz, A.; Iglauer, S. 2022. Gas hydrate characterization in sediments via x-ray microcomputed tomography. Earth-Science Rev., 234, 104233. https://doi.org/10.1016/j.earscirev.2022.104233
Abdullah, J.; Cassanello, M. C. F.; Dudukovic, M. P.; Dyakowski, T.; Hamada, M. M.; Jin, J. H.; Johansen, G. A.; Kim, J. B.; Legoupil, S. A.; Maad, R.; Mesquita, C.; Nowakowski, J.; Ramirez-Garcia, F. P.; Sankowski, D.; Sipaun, S. M.; Thyn, J. 2008. Industrial Process Gamma Tomography. IAEA-TECDOC-1589. pp. 1-153.
Al-Tersawy, S. H.; El-Sadany, R. A.; Sallam, H. E. M. 2021. Experimental gamma-ray attenuation and theoretical optimization of barite concrete mixtures with nanomaterials against neutrons and gamma rays. Constr. Build. Mater., 289, 123190. https://doi.org/10.1016/j.conbuildmat.2021.123190
Al-Yaseri, A.; Rizwanullah Hussaini, S.; Fatah, A.; Al-Qasim, A. S.; Patil, P. D. 2024. Computerized tomography analysis of potential geochemical reactions of carbonate rocks during underground hydrogen storage. Fuel, 361, 130680. https://doi.org/10.1016/j.fuel.2023.130680
An, R.; Wang, Y.; Zhang, X.; Chen, C.; Liu, X.; Cai, S. 2023. Quantitative characterization of drying-induced cracks and permeability of granite residual soil using micron-sized X-ray computed tomography. Sci. Total Environ., 876, 163213. https://doi.org/10.1016/j.scitotenv.2023.163213
Berger, M. J.; Hubbell, J. H.; Seltzer, S. M.; Chang, J.; Coursey, J. S.; Sukumar, R.; Zucker, D. S.; Olsen, K. 2010. XCOM: Photon Cross Section Database (version 1.5). Available at: http://physics.nist.gov/xcom. Accessed at: 5.23.24).
Bjørnstad, T. 2021. Modern Industry: Gamma Methods for Materials Testing and Inspection. In: Autor. Encyclopedia of Nuclear Energy. Elsevier, pp. 345-371. https://doi.org/10.1016/B978-0-12-819725-7.00142-2
Chirol, C.; Carr, S. J.; Spencer, K. L.; Moeller, I. 2021. Pore, live root and necromass quantification in complex heterogeneous wetland soils using X-ray computed tomography. Geoderma, 387, 114898. https://doi.org/10.1016/j.geoderma.2020.114898
Cloete, K. J.; Šmit, Ž.; Minnis-Ndimba, R.; Vavpeti?, P.; du Plessis, A.; le Roux, S. G.; Pelicon, P. 2019. Physico-elemental analysis of roasted organic coffee beans from Ethiopia, Colombia, Honduras, and Mexico using X-ray micro-computed tomography and external beam particle induced X-ray emission. Food Chemistry: X, 2, 100032. https://doi.org/10.1016/j.fochx.2019.100032
Dantas, C. C.; Melo, S. B.; Oliveira, E. F.; Simões, F. P. M.; Santos, M. G.; Santos, V. A. 2008. Measurement of density distribution of a cracking catalyst in experimental riser with a sampling procedure for gamma ray tomography. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 266, 841-848. https://doi.org/10.1016/j.nimb.2008.01.029
Fonseca, A. C. G.; Costa, L. F.; Dantas, C. C.; Heck, R. J.; Melo, S. B.; Antonino, A. C. D.; Barbosa, E. S. 2019. Precise determination of soil structure parameters in a X-ray and ?-ray CT combination methodology. Prog. Nucl. Energy, 114, 138-144. https://doi.org/10.1016/j.pnucene.2019.02.007
Freire, L.; Lima, J. S.; Veríssimo, C. U.; Vicente, da S. 2017. Carste em Rochas Não Carbonáticas: contribuição ao estudo geomorfológico em cavernas de arenito da Amazônia Paraense. Rev. Bras. Geogr. Física, 10, 1829-1845.
Galkin, S. V.; Martyushev, D.A.; Osovetsky, B.M.; Kazymov, K.P.; Song, H. 2022. Evaluation of void space of complicated potentially oil-bearing carbonate formation using X-ray tomography and electron microscopy methods. Energy Reports, 8, 6245-6257. https://doi.org/10.1016/j.egyr.2022.04.070
Geiger, J.; Hunyadfalvi, Z.; Bogner, P. 2009. Analysis of small-scale heterogeneity in clastic rocks by using computerized X-ray tomography (CT). Eng. Geol., 103, 112-118. https://doi.org/10.1016/j.enggeo.2008.06.011
Giamas, V.; Koutsovitis, P.; Sideridis, A.; Turberg, P.; Grammatikopoulos, T.A.; Petrounias, P.; Giannakopoulou, P. P.; Koukouzas, N.; Hatzipanagiotou, K. 2022. Effectiveness of X-ray micro-CT applications upon mafic and ultramafic ophiolitic rocks. Micron, 158, 103292. https://doi.org/10.1016/j.micron.2022.103292
Gurin, G.; Ilyin, Y.; Nilov, S.; Ivanov, D.; Kozlov, E.; Titov, K. 2018. Induced polarization of rocks containing pyrite: Interpretation based on X-ray computed tomography. J. Appl. Geophys., 154, 50-63. https://doi.org/10.1016/j.jappgeo.2018.04.019
Jacobs, P.; Cnudde, V. 2009. ‘Applications of X-ray computed tomography in engineering geology’ or ‘looking inside rocks ….’. Eng. Geol., 103, 67-68. https://doi.org/10.1016/j.enggeo.2008.12.001
Khudhur, F. W. K.; MacDonald, J. M.; Daly, L.; Macente, A.; Spruženiece, L.; Griffin, S.; Wilson, C. 2023. Microstructural analysis of slag properties associated with calcite precipitation due to passive CO2 mineralization. Micron, 174, 103532. https://doi.org/10.1016/j.micron.2023.103532
León-Quinto, T.; Madrigal, R.; Cabello, E.; Fimia, A.; Serna, A. 2024. Morphological and biochemical responses of a neotropical pest insect to low temperatures. J. Therm. Biol., 119, 103795. https://doi.org/10.1016/j.jtherbio.2024.103795
Martinez-Garcia, J.; Stelzner, I.; Stelzner, J.; Gwerder, D.; Schuetz, P. 2021. Automated 3D tree-ring detection and measurement from X-ray computed tomography. Dendrochronologia, 69, 125877. https://doi.org/10.1016/j.dendro.2021.125877
Martínez-Martínez, J.; Fusi, N.; Galiana-Merino, J. J.; Benavente, D.; Crosta, G. B. 2016. Ultrasonic and X-ray computed tomography characterization of progressive fracture damage in low-porous carbonate rocks. Eng. Geol., 200, 47-57. https://doi.org/10.1016/j.enggeo.2015.11.009
Martyushev, D. A.; Chalova, P. O.; Davoodi, S.; Ashraf, U. 2023a. Evaluation of facies heterogeneity in reef carbonate reservoirs: A case study from the oil field, Perm Krai, Central-Eastern Russia. Geoenergy Sci. Eng., 227, 211814. https://doi.org/10.1016/j.geoen.2023.211814
Martyushev, D. A.; Davoodi, S.; Kadkhodaie, A.; Riazi, M.; Kazemzadeh, Y.; Ma, T. 2024. Multiscale and diverse spatial heterogeneity analysis of void structures in reef carbonate reservoirs. Geoenergy Sci. Eng., 233, 212569. https://doi.org/10.1016/j.geoen.2023.212569
Martyushev, D. A.; Galkin, S. V.; Shelepov, V. V. 2019. The Influence of the Rock Stress State on Matrix and Fracture Permeability under Conditions of Various Lithofacial Zones of the Tournaisian–Fammenian Oil Fields in the Upper Kama Region. Moscow Univ. Geol. Bull., 74, 573-581. https://doi.org/10.3103/S0145875219060061
Martyushev, D. A.; Ponomareva I. N.; ?sovetsky B. M.; ?azymov K. P.; ?omilina ?. ?.; Lebedeva ?. S.; Chukhlov ?. S. 2022. Study of the structure and development of oil deposits in carbonate reservoirs using field data and X-ray microtomography. Georesursy, 24, 114-124. https://doi.org/10.18599/grs.2022.3.10
Martyushev, D. A.; Ponomareva, I. N.; Chukhlov, A. S.; Davoodi, S.; Osovetsky, B. M.; Kazymov, K. P.; Yang, Y. 2023b. Study of void space structure and its influence on carbonate reservoir properties: X-ray microtomography, electron microscopy, and well testing. Mar. Pet. Geol., 151, 106192. https://doi.org/10.1016/j.marpetgeo.2023.106192
Melo, A. C.; Bettiol, G.; Barbosa, L.; Augusto, I.; Eyji, E. 2023. Susceptibilidade à erosão, perda de solos e vulnerabilidade natural na bacia do Médio Rio Araguaia - Brasil. Rev. Bras. Geogr. Física, 16, 3103-3124.
Müter, D.; Pedersen, S.; Sørensen, H. O.; Feidenhans’l, R.; Stipp, S. L. S. 2012. Improved segmentation of X-ray tomography data from porous rocks using a dual filtering approach. Comput. Geosci., 49, 131-139. https://doi.org/10.1016/j.cageo.2012.06.024
Nova, A. A. V. 2020. Quantificação da Porosidade em Rochas Calcárias por Meio de Tomografia Computadorizada de Raios X e de Raios Gama. Universidade Federal de Pernambuco. 82p.
Paula, R. T.; Rocha, C. G. 2021. Caracterização Física e Mineralógica de Materiais Intempéricos na Área Urbana de Juiz de Fora – MG, através de Análise Macroscópica, Difratômetro de Raios-X (DRX) e Microscópio Eletrônico de Varredura (MEV). Rev. Bras. Geogr. Física, 14, 1787-1804.
Peak, D. 2023. Fourier transform infrared spectroscopic methods of soil analysis. In: AUTOR. Encyclopedia of Soils in the Environment. Elsevier, pp. 510-518. https://doi.org/10.1016/B978-0-12-822974-3.00230-5
Peters, E. J.; Afzal, N. 1992. Characterization of heterogeneities in permeable media with computed tomography imaging. J. Pet. Sci. Eng., 7, 283-296. https://doi.org/10.1016/0920-4105(92)90024-U
Poludniowski, G.; Landry, G.; DeBlois, F.; Evans, P. M.; Verhaegen, F. 2009. SpekCalc?: a program to calculate photon spectra from tungsten anode x-ray tubes. Phys. Med. Biol., 54, N433-N438. https://doi.org/10.1088/0031-9155/54/19/N01
Rahner, M. S.; Halisch, M.; Fernandes, C. P.; Weller, A.; Sampaio, S. S. V. 2018. Fractal dimensions of pore spaces in unconventional reservoir rocks using X-ray nano- and micro-computed tomography. J. Nat. Gas Sci. Eng., 55, 298-311. https://doi.org/10.1016/j.jngse.2018.05.011
Saadat, K.; Rahimpour-Bonab, H. 2023. Lithology determination and petrophysical rock typing of sedimentary rocks using X-ray tomography. Geoenergy Sci. Eng., 231, 212397. https://doi.org/10.1016/j.geoen.2023.212397
Santos, V. A.; Dantas, C. C.; Luna-Finkler, C. L.; Souza, J. E. G. 2011. Principal component analysis in an experimental cold flow model of a fluid catalytic cracking unit by gammametry. Prog. Nucl. Energy, 53, 1114-1118. https://doi.org/10.1016/j.pnucene.2011.06.008
Sturrock, C. J. 2023. Non-invasive imaging of soil processes. In: Goss, M. J.; Oliver, M. (Eds.) Encyclopedia of Soils in the Environment. Elsevier, pp. 459-468. https://doi.org/10.1016/B978-0-12-822974-3.00151-8
Tötzke, C.; Kozhuharova, B.; Kardjilov, N.; Lenoir, N.; Manke, I.; Oswald, S. E. 2024. Non-invasive 3D analysis of microplastic particles in sandy soil - Exploring feasible options and capabilities. Sci. Total Environ., 907, 167927. https://doi.org/10.1016/j.scitotenv.2023.167927
Van Geet, M.; Swennen, R.; Wevers, M. 2000. Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography. Sediment. Geol. 132, 25-36. https://doi.org/10.1016/S0037-0738(99)00127-X
Volume Graphics GmbH, 2020. VGSTUDIO MAX 3.4 Reference Manual. 34p.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Wellington da Silva Carvalho, Daniel Milian Pérez, Abel Gámez Rodríguez, Yaicel Ge Proenza, Patrício Luiz de Andrade, Daniel Amancio Duarte, Márcio Fernando Paixão de Brito, Cássia Bezerra Machado, Raquel Milani, Antonio Celso Dantas Antonino

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Material protegido por direitos autorais e plágio. No caso de material com direitos autorais ser reproduzido no manuscrito, a atribuição integral deve ser informada no texto; um documento comprobatório de autorização deve ser enviado para a Comissão Editorial como documento suplementar. É da responsabilidade dos autores, não do JEAP ou dos editores ou revisores, informar, no artigo, a autoria de textos, dados, figuras, imagens e/ou mapas publicados anteriormente em outro lugar. Se existir alguma suspeita sobre a originalidade do material, a Comissão Editorial pode verificar o manuscrito por plágio. Nos casos em que trechos já publicados em outro documento for confirmado, o manuscrito será devolvido sem revisão adicional e sem a possibilidade de nova submissão. Autoplágio (ou seja, o uso de frases idênticas de documentos publicados anteriormente pelo mesmo autor) também não é aceitável.
Direitos autorais: Autor
Material protected by copyright and plagiarism rights. In the case of copyrighted material being reproduced in a manuscript, full attribution should be informed in the text; an authorization document is proving to be sent to the Editorial Board as a supplementary document. It is the responsibility of the authors, not JEAP or editors or reviewers, to inform, in the article, the authors of texts, data, graphics, images and maps previously published elsewhere. If there is any suspicion about the originality of the material, the Editorial Board can check the manuscript for plagiarism. Where plagiarism is confirmed, the document will be returned without further review and the possibility of a new submission. Self-plagiarism (i.e., the use of the same phrases previously published documents by any of the authors) is not acceptable.
Copyright: Author

