Diferentes fontes alimentares sobre o desempenho inicial de pós-larvas de cachama (Piaractus brachypomus) na Amazônia equatoriana
DOI:
https://doi.org/10.26605/medvet-v19n2-7333Palavras-chave:
larvicultura, alimento vivo, dieta primária, peixes nativosResumo
A cachama ou pacu (Piaractus brachypomus), espécie de peixe nativa do Equador, tem enfrentado limitações em sua produção. Neste contexto, o foco principal está em aperfeiçoar os métodos de reprodução e aumentar a sobrevivência durante a larvicultura. A presente pesquisa teve como objetivo avaliar e comparar o efeito de dietas iniciais na criação de pós-larvas de cachama em ambientes controlados numa estação piscícola na Amazônia Equatoriana. Pós-larvas de cachama, obtidas por reprodução induzida com extrato de hipófise de carpa, foram alimentadas com dietas específicas para atender às exigências nutricionais mínimas, visando garantir a sobrevivência e crescimento. As dietas testadas foram: T0 - zooplâncton, T1 - spirulina, T2 - ração comercial e T3 - náuplios de Artemia salina. Aplicaram-se análises estatísticas ANOVA e o teste de Tukey para identificar e comparar as diferenças entre os tratamentos. Um delineamento experimental inteiramente casualizado foi utilizado com os quatro tratamentos, três repetições e durante 72h (a cada 6h). A taxa de crescimento absoluto foi maior no tratamento T3 (0,36 ± 0,03mg/dia) em comparação aos tratamentos T0, T1 e T2, que apresentaram 0,31 ± 0,01mg/dia, 0,27 ± 0,004mg/dia e 0,13 ± 0,003mg/dia, respectivamente. Os melhores resultados foram obtidos com o uso de náuplios de A. salina como alimentação inicial. Essa dieta e o zooplâncton demonstraram melhor desempenho nos indicadores de crescimento e sobrevivência, favorecendo o desenvolvimento das pós-larvas.Downloads
Referências
Acosta-Muñoz, A.H. et al. Evaluación de tres tipos de alimento como dieta en post-larvas de Sábalo Amazónico (Brycon melanopterus, Cope 1872). Revista Veterinaria Y Zootecnia, 4(1): 42–50, 2010.
Ajiboye, O. et al. A review of the use of copepods in marine fish larviculture. Reviews in Fish Biology and Fisheries, 21(2): 225–246, 2011.
Alagawany, M. et al. Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture, 542: 736841, 2021.
Atencio-García, V. et al. Influência da primeira alimentação na larvicultura e alevinagem do yamú Brycon siebenthalae (Characidae). Acta Scientiarum. Animal Sciences, 25(1): 61–72, 2003.
Avnimelech, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3–4): 227–235, 1999.
Borah, K. et al. Physio-metabolic alterations in Labeo rohita (Hamilton, 1822) and native predator Chitala chitala (Hamilton, 1822) in presence of an invasive species Piractus brachypomus (G. Cuvier, 1818). Environmental Science and Pollution Research, 31(38): 50686-50699, 2024.
Cahu, C.; Zambonino Infante, J. Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 200(1–2): 161–180, 2001.
Carrera-Quintana, S.C.; Gentile, P.; Girón-Hernández, J. An overview on the aquaculture development in Colombia: Current status, opportunities and challenges. Aquaculture, 561: 738583, 2022.
Clavero, M. et al. Biodiversity in heavily modified waterbodies: native and introduced fish in Iberian reservoirs. Freshwater Biology, 58(6): 1190–1201, 2013.
Cordeiro, N.I.S. et al. High stocking density during larviculture and effect of size and diet on production of juvenile Lophiosilurus alexandri Steindachner, 1876 (Siluriformes: Pseudopimelodidae). Journal of Applied Ichthyology, 32(1): 61–66, 2016.
Council, N.R. Nutrient Requirements of Fish and Shrimp. Washington, D.C.: National Academies Press, 2011. Disponível em: <http://www.nap.edu/catalog/13039>. Acesso em: 10 set. 2024.
David, C. et al. La dieta usada en la primera alimentación afecta la ganancia de peso y longitud total de larvas de cachama blanca (Piaractus brachypomus). Revista Colombiana de Ciencias Pecuarias, 24(1): 48–54, 2011.
Dhont, J. et al. Rotifers, Artemia and copepods as live feeds for fish larvae in aquaculture. Advances in Aquaculture Hatchery Technology, 2013: 157–202, 2013.
Escobar L., M.D. et al. Delimiting Evolutionarily Significant Units of the Fish, Piaractus brachypomus (Characiformes: Serrasalmidae), from the Orinoco and Amazon River Basins with Insight on Routes of Historical Connectivity. Journal of Heredity, 106(S1): 428–438, 2015.
Escobar L.M.D. et al. A new species of Piaractus (Characiformes: Serrasalmidae) from the Orinoco Basin with a redescription of Piaractus brachypomus. Journal of Fish Biology, 95(2): 411–427, 2019.
FAO. Food and Agriculture Organization of the United Nations. Informe de la FAO: La producción mundial de la pesca y la acuicultura alcanza un nuevo máximo histórico | FAO en Ecuador | Food and Agriculture Organization of the United Nations. 2024. Disponível em: <https://www.fao.org/ecuador/noticias/detail-events/en/c/1696495/>. Acesso em: 15 ago. 2024.
Gisbert, E. et al. Development, nutrition, and rearing practices of relevant catfish species (Siluriformes) at early stages. Reviews in Aquaculture, 14(1), 73–105, 2022.
Gómez-Manrique, W.; Calderon-Bernal, J.M. Toxicidad aguda del sulfato de cobre (CuSO4) en alevinos de cachama blanca (Piaractus brachypomus) bajo condiciones de aguas blandas. Orinoquia, 10(1): 64–70, 2006.
Hamre, K. et al. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Reviews in Aquaculture, 5(SUPPL.1): S26–S58, 2013.
Hamre, K. et al. Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquaculture Nutrition, 14(1): 51–60, 2008.
He, G. et al. China’s food security challenge: Effects of food habit changes on requirements for arable land and water. Journal of Cleaner Production, 229: 739–750, 2019.
Hopkins, K.D. Reporting Fish Growth: A Review of the Basics1. Journal of the World Aquaculture Society, 23(3): 173–179, 1992.
Hua, K. et al. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth, 1(3): 316–329, 2019.
IBM Corp. IBM SPSS Statistics. 2021. Disponível em: <https://www.ibm.com/es-es/products/spss-statistics>. Acesso em: 11 fev. 2025.
Ingle de la Mora, G. et al. Evaluación de algunos parámetros de calidad del agua en un sistema cerrado de recirculación para la acuicultura, sometido a diferentes cargas de biomasa de peces. Hidrobiológica, 13(4): 247–253, 2003.
Jomori, R. K. et al. Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture, 221(1–4): 277–287, 2003.
Jomori, R.K. et al. Stable carbon (?13C) and nitrogen (?15N) isotopes as natural indicators of live and dry food in Piaractus mesopotamicus (Holmberg, 1887) larval tissue. Aquaculture Research, 39(4): 370–381, 2008.
Joshua, W.J. et al. Development of enriched Artemia and Moina in larviculture of fish and crustaceans: a review. Latin American Journal of Aquatic Research, 50(2): 144–157, 2022.
Kolkovski, S.; Arieli, A.; Tandler, A. Visual and chemical cues stimulate microdiet ingestion in sea bream larvae. Aquaculture International, 5(6): 527–536, 1997.
Mahadik, P.U. et al. Effect of fermented rice bran as a carbon source for rearing genetically improved farmed Tilapia, Oreochromis niloticus (Linnaeus, 1758), fry in biofloc system. Aquaculture, 592: 741246, 2024.
Medeiros, E.S.F.; Arthington, A.H. The importance of zooplankton in the diets of three native fish species in floodplain waterholes of a dryland river, the Macintyre River, Australia. Hydrobiologia, 614(1): 19–31, 2008.
Mena, C.F.; Bilsborrow, R. E.; McClain, M. E. Socioeconomic drivers of deforestation in the Northern Ecuadorian Amazon. Environmental Management, 37(6): 802–815, 2006.
Muñoz, A. et al. Evaluación de tres tipos de alimento como dieta en post-larvas de Sábalo Amazónico (Brycon melanopterus, Cope 1872)1. Revista Veterinaria y Zootecnia, 4(1): 42–50, 2010.
Murray, C.A. et al. Developing efficient feeding and weaning protocols for Betta splendens informed by larval digestive physiology. Aquaculture, 587: 740884, 2024.
Oliveira, M.A. et al. Estudo fitoquímico, toxicidade em Artemia salina (Linnaeus, 1758) e atividade antibacteriana de Pseudoxandra cuspidata Maas. In: Oliveira, M.A. de; Cantuária, P. de C. (Orgs). Plantas medicinais do estado do Amapá: dos relatos da população à pesquisa científica. Macapá: Editora Científica, 2021. p.?153–165.
Ortiz-Naveda, N.R. et al. Descriptive cross-sectional study on major bovine diseases and associated risk factors in north-eastern Ecuadorian Amazon. Brazilian Journal of Biology, 83: e269508, 2023.
Prefectura-Pastaza. Plan de Desarrollo y Ordenamiento Territorial de la Provincia de Pastaza al año 2025: actualización 2019 (Administración 2019-2023). Gobierno Autónomo Descentralizado Provincial de Pastaza, 2019.
Prieto, M.; Atencio, V. Zooplankton in larviculture of neotropical fishes [Zooplancton en la larvicultura de peces neotropicales]. Revista MVZ Cordoba, 13(2): 1415, 2008.
Prusi?ska, M. et al. Effect of feeding barbel larvae (Barbus barbus (L, 1758)) Artemia sp. nauplii enriched with PUFAs on their growth and survival rate, blood composition, alimentary tract histological structure and body chemical composition. Aquaculture Reports, 18: 100492, 2020.
Sakamoto, K.; Lewbart, G.A.; Smith, T.M. Blood Chemistry Values of Juvenile Red Pacu (Piaractus brachypomus). Veterinary Clinical Pathology, 30(2): 50–52, 2001.
Santos, F.A.C.; Da Costa Julio, G.S.; Luz, R.K. Stocking density in Colossoma macropomum larviculture, a freshwater fish, in recirculating aquaculture system. Aquaculture Research, 52(3): 1185–1191, 2021.
Sirén, A. El consumo de pescado y fauna acuática silvestre en la amazonía ecuatoriana. FAO Copescal Documento Ocasional, 12(1): 1-28, 2011.
Sta?czak, K. et al. The use of live and frozen Artemia salina nauplii enriched with fluorochromes for mass-marking vendace Coregonus albula (L.) larvae. Journal of Applied Ichthyology, 33(6): 1173–1177, 2017.
Torres-Tabares, A. et al. Características morfológicas, morfométricas, merísticas y manejo de la primera alimentación de larvas de escalar altum (Pterophyllum altum) (Pellegrin, 1903). Orinoquia, 18: 183–192, 2014.
Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science, 341(6145): 508–513, 2013.
Wocher, H.; Harsányi, A.; Schwarz, F.J. Larviculture of burbot (Lota lota L.): larval rearing using Artemia and weaning onto dry feed. Aquaculture Research, 44(1): 106–113, 2012.
Wolnicki, J.; Kami?ski, R.; Myszkowski, L. Temperature-influenced growth and survival of burbot Lota lota (L.) larvae fed live food under controlled conditions. Fisheries & Aquatic Life, 10(1): 109–113, 2002.
Yildiz, H.Y. et al. Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review. Water, 9(1): 13, 2017.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Valeria Macarena Silva-Espín, Luis Antonio Castillo Cevallos, Amanda Elisabeth Bonilla Bonilla, Nelson René Ortiz Naveda

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- A Revista de Medicina Veterinária permite que o autor retenha os direitos de publicação sem restrições, utilizando para tal a licença Creative Commons CC BY-NC-SA 4.0.
- De acordo com os termos seguintes:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- NãoComercial — Você não pode usar o material para fins comerciais.
- CompartilhaIgual — Se você remixar, transformar, ou criar a partir do material, tem de distribuir as suas contribuições sob a mesma licença que o original.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.




