The effect of UVA radiation on the production of photoprotective compounds and carotenoids in terrestrial cyanobacteria strains

Authors

DOI:

https://doi.org/10.24221/jeap.10.4.2025.7170.276-283

Keywords:

anti-UV, Atlantic Forest, bioactive, scytonemin, secondary metabolites

Abstract

Cyanobacteria constitute a diverse group of photosynthetic prokaryotes with significant metabolic complexity, capable of synthesizing bioactive pigments and compounds with potential applications as natural bioproducts, including carotenoids, scytonemin, and mycosporine-like amino acids (MAAs). So, this study aims to explore and investigate the potential of terrestrial cyanobacteria isolated from the Brazilian Atlantic Forest in producing photoprotective (anti-UV) substances and the effect of UVA radiation on this production. Six strains of terrestrial cyanobacteria were isolated from the Brazilian Atlantic Forest and subjected to 24-hour UV-A irradiation. Afterward, the output of photoprotectors (scytonemim and MAAs) and carotenoids was evaluated through extraction by maceration with 100% acetone and 20% methanol, then measured using a spectrophotometry method. The investigation revealed significant production of scytonemin under UV-A irradiation in the Aphanothece sp. CCIBt 3609 and Plectolyngbya sp. CCAPE 79 strains. This study provides unprecedented data on scytonemin production in the genus Plectolyngbya and solidifies Aphanothece as a potential source of the anti-UV compound scytonemin.

Downloads

Download data is not yet available.

References

Abed, R. M.; Dobrestov, S; Al-Kharusi, S.; Schramm, A.; Jupp, B.; Golubic, S. 2011. Cyanobacterial diversity and bioactivity of inland hypersaline microbial mats from a desert stream in the Sultanate of Oman. Fottea, 11, 215-224.

Browne, N.; Otero, P.; Murray, P.; Saha, S. K. 2023. Rapid Screening for Mycosporine-like Amino Acids (MAAs) of Irish Marine Cyanobacteria and Their Antioxidant Potential. Sustainability, 15, 3792. https://doi.org/10.3390/su15043792

Caires, T. A.; Affe, H. M. J. 2021. Brazilian Coast: A Significant Gap in the Knowledge of Cyanobacteria and Their Applications. Cyanobacteria. Wael, N. H. Rijeka, IntechOpen, Ch. 5, 1-16. https://doi.org/10.5772/intechopen.97151

Cezare-Gomes, E. A.; Mejia-da-Silva, L. C.; Pérez-Mora, L. S.; Matsudo, M. C.; Ferreira-Camargo, L. S.; Singh, A. K.; Carvalho, J. C. M. 2019. The potential of microalgae carotenoids for industrial application. Applied Biochemistry and Biotechnology, 188, 602-634.

Fabrowska, J.; Messyasz, B.; Szyling, J.; Walkowiak, J.; ??ska, B. 2018. Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods. Phycological Research, 66, 52-57. https://doi.org/10.1111/pre.12191

Gao, X.; Jing, X.; Liu, X.; Lindblad, P. 2021. Biotechnological production of the sunscreen pigment scytonemin in cyanobacteria: Progress and strategy. Marine Drugs, 19, 129. https://doi.org/10.3390/md19030129

Garcia?Pichel, F.; Castenholz, R. W. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology, 27, 395-409.

Garlapati, D.; Chandrasekaran, M.; Devanesan, A.; Mathiamani, T.; Pugazhendhi, A. 2019. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Applied Microbiology and Biotechnology, 103, 4709-4721. https://doi.org/10.1007/s00253-019-09811-1

Genuário, D. B.; Vaz, M. G. M. V.; Santos, S. N.; Kavamura, V. N.; Melo, I. S. 2019. Cyanobacteria From Brazilian Extreme Environments: Toward Functional Exploitation. In: Das, S. and Dash, H. R. (Ed.). Microbial Diversity in the Genomic Era. Academic Press, Chapter 16, pp. 265-284.

Geraldes, V.; Jacinavicius, F. R.; Genuário, D. B.; Pinto, E. 2020. Identification and distribution of mycosporine-like amino acids in Brazilian cyanobacteria using ultrahigh-performance liquid chromatography with diode array detection coupled to quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 34, e8634. https://doi.org/10.1002/rcm.8634

Guerreiro, A.; Andrade, M. A.; Menezes, C.; Vilarinho, F.; Dias, E. 2020. Antioxidant and cytoprotective properties of cyanobacteria: Potential for biotechnological applications. Toxins, 12, 548. https://doi.org/10.3390/toxins12090548

Hachicha, R.; Elleuch, F.; Hlima, H. B.; Dubessay, P.; Baynast, H.; Delattre, C.; Pierra, G.; Hachicha, R.; Abdelkafi, S.; Michaud, P. 2022. Biomolecules from microalgae and cyanobacteria: Applications and market survey. Applied Sciences, 12, 1924. https://doi.org/10.3390/app12041924

Jacinavicius, F. R.; Gama, W.; Azevedo, M. P.; Sant’Anna, C. 2013. Manual para cultivo de cianobactérias. São Paulo, Secretaria do Meio Ambiente do Estado de São Paulo. 28p.

Kannaujiya, V. K.; Sinha, R. 2017. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. Protoplasma, 254, 423-433. https://doi.org/10.1007/s00709-016-0964-0

Khalifa, S. A.; Shedid, E. S.; Saied, E. M.; Jassbi, A. R.; Jamebozorgi, F. H.; Rateb, M. E.; Du, M.; Abdel-Daim, M. M.; Kai, G.-Y.; Al-Hammady, M. A. 2021. Cyanobacteria - From the oceans to the potential biotechnological and biomedical applications. Marine Drugs, 19, 241. https://doi.org/10.3390/md19050241

Kokabi, M.; Yousefzadi, M.; Soltani, M.; Arman, M. 2019. Effects of different UV radiation on photoprotective pigments and antioxidant activity of the hot?spring cyanobacterium Leptolyngbya cf. fragilis. Phycological Research, 67, 215-220. https://doi.org/10.1111/pre.12374

Kumari, N.; Pathak, J.; Dwivedy, A. K.; Sinha, R. P. 2021. Bioprospection of UV screening compounds from lichens inhabiting the Indian state of Sikkim. Plant Archives, 21, 1168-1177. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.155

Lima, R. A. F.; Oliveira, A. A.; Pitta, G. R.; Gasper, A. L.; Vibrans, A. C.; Chave, J.; ter Steege, H.; Prado, P. I. 2020. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nature Communications, 11, 6347. https://doi.org/10.1038/s41467-020-20217-w

Mansouri, H.; Talebizadeh, R. 2017. Effects of indole?3?butyric acid on growth, pigments and UV?screening compounds in Nostoc linckia. Phycological Research, 65, 212-216. https://doi.org/10.1111/pre.12177

Maoka, T. 2020. Carotenoids as natural functional pigments. Journal of Natural Medicines, 74, 1-16. https://doi.org/10.1007/s11418-019-01364-x

Morone, J.; Alfeus, A.; Vasconcelos, V.; Martins, R. 2019. Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals - A new bioactive approach. Algal Research, 41, 101541. https://doi.org/10.1016/j.algal.2019.101541

Nazifi, E.; Wada, N.; Asano, T.; Nishiuchi, T.; Iwamuro, Y.; Chinaka, S.; Matsugo, S.; Sakamoto, T. 2015. Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune. Journal of Photochemistry and Photobiology B: Biology, 142, 154-168. http://dx.doi.org/10.1016/j.jphotobiol.2014.12.008

Novoveská, L.; Ross, M. E.; Stanley, M. S.; Pradelle, R.; Wasiolek, V.; Sassi, J.-F. 2019. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, 17, 640. https://doi.org/10.3390/md17110640

Nowruzi, B.; Sarvari, G.; Blanco, S. 2020. The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959. https://doi.org/10.1016/j.algal.2020.101959

Orellana, G.; Gómez-Silva, B.; Urrutia, M.; Galetovi?, A. 2020. UV-A irradiation increases scytonemin biosynthesis in cyanobacteria inhabiting halites at Salar Grande, Atacama Desert. Microorganisms, 8, 1690. https://doi.org/10.3390/microorganisms8111690

Pandey, A.; Pathak, J.; Singh, D. K.; Ahmed, H. Singh, V.; Kumar, D.; Sinha, R. P. 2020. Photoprotective role of UV-screening pigment scytonemin against UV-B-induced damages in the heterocyst-forming cyanobacterium Nostoc sp. strain HKAR-2. Brazilian Journal of Botany, 43, 67-80. https://doi.org/10.1007/s40415-020-00589-5

Rastogi, R. P.; Incharoensakdi, A. 2014. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556. Photochemical & Photobiological Sciences, 13, 1016-1024. https://doi.org/10.1039/c4pp00013g

Rastogi, R. P.; Sonani, R. R.; Madamwar, D. 2015. Cyanobacterial sunscreen scytonemin: role in photoprotection and biomedical research. Applied biochemistry and biotechnology, 176, 1551-1563.

Rosic, N. N. 2019. Mycosporine-like amino acids: making the foundation for organic personalised sunscreens. Marine Drugs, 17, 638. https://doi.org/10.3390/md17110638

Singh, V. K.; Jha, S.; Rana, P.; Mishra, S.; Kumari, N.; Singh, S. C.; Anand, S.; Upadhye, V.; Sinha, R. P. 2023. Resilience and mitigation strategies of cyanobacteria under ultraviolet radiation stress. International Journal of Molecular Sciences, 24, 12381. https://doi.org/10.3390/ijms241512381

Strunecký, O.; Ivanova, A. P.; Mareš, J. 2023. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. Journal of Phycology, 59, 12-51. https://doi.org/10.1111/jpy.13304

Tamre, E.; Fournier, G. P. 2022. Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation. Geobiology, 186, 786-793. https://doi.org/10.1111/gbi.12514

Toribio, A.; Suárez-Estrella, F.; Jurado, M.; López, M.; López-González, J.; Moreno, J. 2020. Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. Biotechnology Reports, 26, e00449. https://doi.org/10.1016/j.btre.2020.e00449

Urrejola, C.; von Dassow, P.; van den Engh, G.; Salas, L.; Mullineaux Conrad, W.; Vicuña, R.; Sánchez-Baracaldo, P. 2020. Loss of Filamentous Multicellularity in Cyanobacteria: the Extremophile Gloeocapsopsis sp. Strain UTEX B3054 Retained Multicellular Features at the Genomic and Behavioral Levels. Journal of Bacteriology, 202, 514-519. https://doi.org/10.1128/jb.00514-00519

Published

2025-12-31

How to Cite

Gama, W. A., Souza, G. J. S. de, & Nascimento, L. C. B. (2025). The effect of UVA radiation on the production of photoprotective compounds and carotenoids in terrestrial cyanobacteria strains. Journal of Environmental Analysis and Progress, 10(4), 276–283. https://doi.org/10.24221/jeap.10.4.2025.7170.276-283