The effect of UVA radiation on the production of photoprotective compounds and carotenoids in terrestrial cyanobacteria strains
DOI:
https://doi.org/10.24221/jeap.10.4.2025.7170.276-283Palavras-chave:
anti-UV, Atlantic Forest, bioactive, scytonemin, secondary metabolitesResumo
Cyanobacteria constitute a diverse group of photosynthetic prokaryotes with significant metabolic complexity, capable of synthesizing bioactive pigments and compounds with potential applications as natural bioproducts, including carotenoids, scytonemin, and mycosporine-like amino acids (MAAs). The study aimed to explore the potential of terrestrial cyanobacteria isolated from the Brazilian Atlantic Forest to produce photoprotective (anti-UV) substances and to investigate the effect of UVA radiation on this production. Six strains of terrestrial cyanobacteria were isolated from the Brazilian Atlantic Forest and subjected to 24 hours of UV-A irradiation. Afterward, the output of photoprotectors (scytonemim and MAAs) and carotenoids was evaluated by maceration with 100% acetone and 20% methanol, then measured by spectrophotometry. The investigation revealed significant production of scytonemin under UV-A irradiation in the Aphanothece sp. CCIBt 3609 and Plectolyngbya sp. CCAPE 79 strains. This study provides unprecedented data on scytonemin production in the genus Plectolyngbya and solidifies Aphanothece as a potential source of the anti-UV compound scytonemin.Downloads
Referências
Abed, R. M.; Dobrestov, S; Al-Kharusi, S.; Schramm, A.; Jupp, B.; Golubic, S. 2011. Cyanobacterial diversity and bioactivity of inland hypersaline microbial mats from a desert stream in the Sultanate of Oman. Fottea, 11, 215-224.
Browne, N.; Otero, P.; Murray, P.; Saha, S. K. 2023. Rapid Screening for Mycosporine-like Amino Acids (MAAs) of Irish Marine Cyanobacteria and Their Antioxidant Potential. Sustainability, 15, 3792. https://doi.org/10.3390/su15043792
Caires, T. A.; Affe, H. M. J. 2021. Brazilian Coast: A Significant Gap in the Knowledge of Cyanobacteria and Their Applications. Cyanobacteria. Wael, N. H. Rijeka, IntechOpen, Ch. 5, 1-16. https://doi.org/10.5772/intechopen.97151
Cezare-Gomes, E. A.; Mejia-da-Silva, L. C.; Pérez-Mora, L. S.; Matsudo, M. C.; Ferreira-Camargo, L. S.; Singh, A. K.; Carvalho, J. C. M. 2019. The potential of microalgae carotenoids for industrial application. Applied Biochemistry and Biotechnology, 188, 602-634.
Fabrowska, J.; Messyasz, B.; Szyling, J.; Walkowiak, J.; ??ska, B. 2018. Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods. Phycological Research, 66, 52-57. https://doi.org/10.1111/pre.12191
Gao, X.; Jing, X.; Liu, X.; Lindblad, P. 2021. Biotechnological production of the sunscreen pigment scytonemin in cyanobacteria: Progress and strategy. Marine Drugs, 19, 129. https://doi.org/10.3390/md19030129
Garcia?Pichel, F.; Castenholz, R. W. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology, 27, 395-409.
Garlapati, D.; Chandrasekaran, M.; Devanesan, A.; Mathiamani, T.; Pugazhendhi, A. 2019. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Applied Microbiology and Biotechnology, 103, 4709-4721. https://doi.org/10.1007/s00253-019-09811-1
Genuário, D. B.; Vaz, M. G. M. V.; Santos, S. N.; Kavamura, V. N.; Melo, I. S. 2019. Cyanobacteria From Brazilian Extreme Environments: Toward Functional Exploitation. In: Das, S. and Dash, H. R. (Ed.). Microbial Diversity in the Genomic Era. Academic Press, Chapter 16, pp. 265-284.
Geraldes, V.; Jacinavicius, F. R.; Genuário, D. B.; Pinto, E. 2020. Identification and distribution of mycosporine-like amino acids in Brazilian cyanobacteria using ultrahigh-performance liquid chromatography with diode array detection coupled to quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 34, e8634. https://doi.org/10.1002/rcm.8634
Guerreiro, A.; Andrade, M. A.; Menezes, C.; Vilarinho, F.; Dias, E. 2020. Antioxidant and cytoprotective properties of cyanobacteria: Potential for biotechnological applications. Toxins, 12, 548. https://doi.org/10.3390/toxins12090548
Hachicha, R.; Elleuch, F.; Hlima, H. B.; Dubessay, P.; Baynast, H.; Delattre, C.; Pierra, G.; Hachicha, R.; Abdelkafi, S.; Michaud, P. 2022. Biomolecules from microalgae and cyanobacteria: Applications and market survey. Applied Sciences, 12, 1924. https://doi.org/10.3390/app12041924
Jacinavicius, F. R.; Gama, W.; Azevedo, M. P.; Sant’Anna, C. 2013. Manual para cultivo de cianobactérias. São Paulo, Secretaria do Meio Ambiente do Estado de São Paulo. 28p.
Kannaujiya, V. K.; Sinha, R. 2017. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. Protoplasma, 254, 423-433. https://doi.org/10.1007/s00709-016-0964-0
Khalifa, S. A.; Shedid, E. S.; Saied, E. M.; Jassbi, A. R.; Jamebozorgi, F. H.; Rateb, M. E.; Du, M.; Abdel-Daim, M. M.; Kai, G.-Y.; Al-Hammady, M. A. 2021. Cyanobacteria - From the oceans to the potential biotechnological and biomedical applications. Marine Drugs, 19, 241. https://doi.org/10.3390/md19050241
Kokabi, M.; Yousefzadi, M.; Soltani, M.; Arman, M. 2019. Effects of different UV radiation on photoprotective pigments and antioxidant activity of the hot?spring cyanobacterium Leptolyngbya cf. fragilis. Phycological Research, 67, 215-220. https://doi.org/10.1111/pre.12374
Kumari, N.; Pathak, J.; Dwivedy, A. K.; Sinha, R. P. 2021. Bioprospection of UV screening compounds from lichens inhabiting the Indian state of Sikkim. Plant Archives, 21, 1168-1177. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.155
Lima, R. A. F.; Oliveira, A. A.; Pitta, G. R.; Gasper, A. L.; Vibrans, A. C.; Chave, J.; ter Steege, H.; Prado, P. I. 2020. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nature Communications, 11, 6347. https://doi.org/10.1038/s41467-020-20217-w
Mansouri, H.; Talebizadeh, R. 2017. Effects of indole?3?butyric acid on growth, pigments and UV?screening compounds in Nostoc linckia. Phycological Research, 65, 212-216. https://doi.org/10.1111/pre.12177
Maoka, T. 2020. Carotenoids as natural functional pigments. Journal of Natural Medicines, 74, 1-16. https://doi.org/10.1007/s11418-019-01364-x
Morone, J.; Alfeus, A.; Vasconcelos, V.; Martins, R. 2019. Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals - A new bioactive approach. Algal Research, 41, 101541. https://doi.org/10.1016/j.algal.2019.101541
Nazifi, E.; Wada, N.; Asano, T.; Nishiuchi, T.; Iwamuro, Y.; Chinaka, S.; Matsugo, S.; Sakamoto, T. 2015. Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune. Journal of Photochemistry and Photobiology B: Biology, 142, 154-168. http://dx.doi.org/10.1016/j.jphotobiol.2014.12.008
Novoveská, L.; Ross, M. E.; Stanley, M. S.; Pradelle, R.; Wasiolek, V.; Sassi, J.-F. 2019. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, 17, 640. https://doi.org/10.3390/md17110640
Nowruzi, B.; Sarvari, G.; Blanco, S. 2020. The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959. https://doi.org/10.1016/j.algal.2020.101959
Orellana, G.; Gómez-Silva, B.; Urrutia, M.; Galetovi?, A. 2020. UV-A irradiation increases scytonemin biosynthesis in cyanobacteria inhabiting halites at Salar Grande, Atacama Desert. Microorganisms, 8, 1690. https://doi.org/10.3390/microorganisms8111690
Pandey, A.; Pathak, J.; Singh, D. K.; Ahmed, H. Singh, V.; Kumar, D.; Sinha, R. P. 2020. Photoprotective role of UV-screening pigment scytonemin against UV-B-induced damages in the heterocyst-forming cyanobacterium Nostoc sp. strain HKAR-2. Brazilian Journal of Botany, 43, 67-80. https://doi.org/10.1007/s40415-020-00589-5
Rastogi, R. P.; Incharoensakdi, A. 2014. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556. Photochemical & Photobiological Sciences, 13, 1016-1024. https://doi.org/10.1039/c4pp00013g
Rastogi, R. P.; Sonani, R. R.; Madamwar, D. 2015. Cyanobacterial sunscreen scytonemin: role in photoprotection and biomedical research. Applied biochemistry and biotechnology, 176, 1551-1563.
Rosic, N. N. 2019. Mycosporine-like amino acids: making the foundation for organic personalised sunscreens. Marine Drugs, 17, 638. https://doi.org/10.3390/md17110638
Singh, V. K.; Jha, S.; Rana, P.; Mishra, S.; Kumari, N.; Singh, S. C.; Anand, S.; Upadhye, V.; Sinha, R. P. 2023. Resilience and mitigation strategies of cyanobacteria under ultraviolet radiation stress. International Journal of Molecular Sciences, 24, 12381. https://doi.org/10.3390/ijms241512381
Strunecký, O.; Ivanova, A. P.; Mareš, J. 2023. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. Journal of Phycology, 59, 12-51. https://doi.org/10.1111/jpy.13304
Tamre, E.; Fournier, G. P. 2022. Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation. Geobiology, 186, 786-793. https://doi.org/10.1111/gbi.12514
Toribio, A.; Suárez-Estrella, F.; Jurado, M.; López, M.; López-González, J.; Moreno, J. 2020. Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. Biotechnology Reports, 26, e00449. https://doi.org/10.1016/j.btre.2020.e00449
Urrejola, C.; von Dassow, P.; van den Engh, G.; Salas, L.; Mullineaux Conrad, W.; Vicuña, R.; Sánchez-Baracaldo, P. 2020. Loss of Filamentous Multicellularity in Cyanobacteria: the Extremophile Gloeocapsopsis sp. Strain UTEX B3054 Retained Multicellular Features at the Genomic and Behavioral Levels. Journal of Bacteriology, 202, 514-519. https://doi.org/10.1128/jb.00514-00519
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Watson Arantes Gama, Gabriel Josias Silva de Souza, Luana Cláudia Barros Nascimento

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Material protegido por direitos autorais e plágio. No caso de material com direitos autorais ser reproduzido no manuscrito, a atribuição integral deve ser informada no texto; um documento comprobatório de autorização deve ser enviado para a Comissão Editorial como documento suplementar. É da responsabilidade dos autores, não do JEAP ou dos editores ou revisores, informar, no artigo, a autoria de textos, dados, figuras, imagens e/ou mapas publicados anteriormente em outro lugar. Se existir alguma suspeita sobre a originalidade do material, a Comissão Editorial pode verificar o manuscrito por plágio. Nos casos em que trechos já publicados em outro documento for confirmado, o manuscrito será devolvido sem revisão adicional e sem a possibilidade de nova submissão. Autoplágio (ou seja, o uso de frases idênticas de documentos publicados anteriormente pelo mesmo autor) também não é aceitável.
Direitos autorais: Autor
Material protected by copyright and plagiarism rights. In the case of copyrighted material being reproduced in a manuscript, full attribution should be informed in the text; an authorization document is proving to be sent to the Editorial Board as a supplementary document. It is the responsibility of the authors, not JEAP or editors or reviewers, to inform, in the article, the authors of texts, data, graphics, images and maps previously published elsewhere. If there is any suspicion about the originality of the material, the Editorial Board can check the manuscript for plagiarism. Where plagiarism is confirmed, the document will be returned without further review and the possibility of a new submission. Self-plagiarism (i.e., the use of the same phrases previously published documents by any of the authors) is not acceptable.
Copyright: Author

