O rúmen como marcador de saúde: revisão de literatura

Autores/as

  • Bruna de Souza Silva Higino Universidade Federal Rural de Pernambuco, Recife- PE, Brasil.
  • Saulo Gusmão Silva de Tarso Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns-PE, Brasil.

DOI:

https://doi.org/10.26605/medvet-v13n3-3287

Palabras clave:

poligástricos, doenças metabólicas, produção animal, rebanho.

Resumen

A avaliação ruminal permite a observação do funcionamento do organismo dos ruminantes como um todo, e tem se destacado a medida que a procura por proteína animal avança. Além disso, as maiores exigências de mercado e do produtor em busca de resultados com um menor tempo, são fatores que justificam os estudos em espécies ruminantes. O compartimento fermentativo do sistema digestório desses animais demonstra modificações a nível sistêmico, inclusive na identificação de predisposição de doenças. Devido à crescente mudança dietética em busca da eficiência na produção, fez-se necessário o aprofundamento sobre as possíveis consequências. O ecossistema complexo do rúmen necessita de aspectos próprios para seu bom desempenho. A fisiologia ruminal diverge entre as espécies e os próprios indivíduos, além de ser influenciado diretamente pelas inúmeras dietas a que podem ser submetidos, sendo o rúmen um órgão capaz de indicar o estado metabólico do animal. O uso de parâmetros de comportamento ruminal como marcadores da saúde de rebanhos, aparece como uma ferramenta inovadora e promissora diante dos desafios atuais na produção de ruminantes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Albright, J.L. Feeding behavior of dairy cattle. Journal of Dairy Science, 76: 486-498, 1993. Alexandratos, N.; Bruinsma, J. Food Agriculture Organization of United States Nations. World agriculture towards 2030/2050 the 2012 revision. Disponível em:http://www.fao.org/docrep/016/ap106e/ap1 06e.pdf>. Acesso em 10 nov. 2017.

Allen, M.S. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of Dairy Science, 80(7): 144762, 1997.

Almeida, P.E.; Weber, P.S.D.; Burton, J.L.; Zanella, A.J. Depressed DHEA and increased sickness response behaviors in lame dairy cows with inflammatory foot lesions. Domestic Animal Endocrinology, 34: 89–99, 2008.

Ametaj, B.N.; Zebeli, Q.; Iqbal, S. Nutrition, microbiota, and endotoxin-related diseases in dairy cows. Revista Brasileira de Zootecnia, 39: 434–444, 2010a.

Ametaj, B.N.; Zebeli, Q.; Saleem, F.; Psychogios, N.; Lewis, M.J.; Dunn, S.M.; Xia, J.; Wishart, D.S. Metabolomics reveals unhealthy

alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics, 6: 583–594, 2010b.

Beauchemin, K.A. Ingestion and mastication of feed by dairy cattle. Veterinary Clinics North America: Food Animal Practice, 7(2): 439– 463, 1991.

Bradford, B.J.; Mamedova, L.K.; Minton, J.E.; Drouillard, J.S.; Johnson, B.J. Daily injection of tumor necrosis factor-alpha increases hepatic triglycerides and alters transcript abundance of metabolic genes in lactating dairy cattle. Journal of Nutrition, 139(8): 1451-1456, 2009.

Bradford, B.J.; Yuan, K.; Farney, J.K.; Mamedova, L.K.; Carpenter, A.J. Invited review: inflammation during the transition to lactation: new adventures with an old flame. Journal of Dairy Science, 98: 6631–6650, 2015.

Burfeind, O.; Suthar, V.S.; Voigtsberger, R.; Bonk, S.; Heuwieser, W. Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows. Journal of Dairy Science, 94: 5053–5061, 2011. Butler, W.R.; Smith R.D. Interrelationships between energy balance and postpartum reproductive function in dairy cattle. Journal of Dairy Science, 72(3): 767-83, 1989.

Calamari, L.; Soriani, N.; Panella, G.; Petrera, F.; Minuti, A; Trevisi, E. Rumination time around calving: An early signal to detect cows at greater risk of disease. Journal of Dairy Science, 97: 3635–3647, 2014.

Catalani, E.; Amadori, M.; Vitali, A.; Bernabucci, U.; Nardone, A.; Lacetera, N. The Hsp72 response in peri-parturient dairy cows: relationships with metabolic and immunological parameters. Cell Stress Chaperones, 15: 781–790, 2010.

Chen, Y.; Oba, M.; Guan, L. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Veterinary Microbiology, 159: 451-459, 2012.

Clauss, M.; Lechner-Doll, M.; Streich, W. J. Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. A reevaluation of an old debate and a new hypothesis. Oikos, 102: 253-262, 2003.

Constable, P.; Hoffsis, G. F.; Rings, D. M. The reticulorumen: normal and abnormal motor function. The Compendium – Food Animal, 12: 1008-1015, 1990.

Cooper-Prado, M.J.; Long, N.M.; Wright, E.C.; Goad, C.L.; Wettemann, R.P. Relationship of ruminal temperature with parturition and estrus of beef cows. Journal of Animal Science, 89: 1020-1027, 2011.

De Tarso, S.G.S.; Oliveira, D; Afonso, J.A.B. Ruminants as part of the global food system: how evolutionary adaptations and diversity of the digestive system brought them to the future Br. Journal of Dairy, Veterinary & Animal Research, 3: 1-7, 2016.

De Tarso, S.G.S. The rumen as a health thermometer: importance of ruminal function to the metabolic balance in ruminants – mini review. Journal of Dairy, Veterinary & Animal Research, 5: 3–5, 2017.

De Boever, I.L.; Andries, J.I.; De Brabander, D.L.; Cottyn, B.G.; Buysse, X. Chewing activity of ruminants as a measure of physical structure-a review of factors affecting it. Animal Feed Science and Technology, 27(4): 281–291, 1990.

Esposito, G.; Irons, P.C.; Webbb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Animal Reproduction Science, 144:60– 71, 2014.

FAO/IAEA. Applications of gene-based technologies for improving animal production and health in developing countries. 1rt ed. Vienna: Springer Science & Business Media, 2005. 793p.

Gonçalves, A.L.; Lana, R.L.; Rodrigues, M.T.; Vieira, R.A.M.; Queiroz, A.C.Q.; Henrique, D.S. Padrão Nictemeral do pH Ruminal e Comportamento Alimentar de Cabras Leiteiras Alimentadas com Dietas Contendo Diferentes Relações Volumoso: Concentrado. Revista Brasileira de Zootecnia, 30(6): 1886-1892, 2001.

Gessner, D.K.; Schlegel, G.; Keller, J.; Schwarz, F.J.; Ringseis, R.; Eder, K. Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. Journal of Dairy Science, 96: 1038–1043, 2013.

Graugnard, D.E.; Moyes, K.M.; Trevisi, E.; Khan, M.J.; Kleisler, D.; Drackley, J.K. Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. Journal of Dairy Science, 96: 918–935, 2013.

Hollmann, M.; Miller, I.; Hummel, K.; Sabitzer, S.; Metzler-Zebeli, B.U.; Razzazi-Fazeli, E. et al. Downregulation of Cellular Protective Factors of Rumen Epithelium in Goats Fed High Energy Diet. PLoS ONE, 8: 12, 2013. Humer, E.; Zebeli, Q. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Animal Feed Science and Technology, 226: 133-151, 2017.

Huzzey; J.M.; Veira, D.M.; Weary, D.M.; Keyserlingk, M.A. Prepartum behavior and dry matter intake identify dairy cows at risk for metritis. Journal of Dairy Science, 90: 32203233, 2007.

Kaufman, E.I.; LeBlanc, S.J.; McBride, B.W.; Duffield, T.F.; DeVries, T.J. Association of rumination time with subclinical ketosis in transition dairy cows. Journal of Dairy Science, 99: 1–15, 2016.

Khafipour, E.; Krause, D.O.; Plaizier, J.C.A. Grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 92: 1060-1070, 2009.

Kovács, L.; Kézér, F.L.; Ruff, F.; Szenc, O. Rumination time and reticulo ruminal temperature as possible predictors of dystocia in dairy cows. Journal of Dairy of Science, 100(2): 1-12, 2017.

Lacetera, N.; Scalia, D.; Bernabucci, U.; Ronchi, B.; Pirazzi, D.; Nardone, A. Lymphocyte functions in overconditioned cows around parturition. Journal Dairy of Science, 88: 2010–2016, 2005.

Leblanc, S.J. Interactions of Metabolism, Inflammation, and Reproductive Tract Health in the Postpartum Period in Dairy Cattle. Reproduction in Domestic Animals, 5(47): 18-30, 2012.

Martz, F.; Belyea, R. Role of particle size and forage quality in digestion and passage by cattle and sheep. Journal of Dairy Science, 69: 1996–2008, 1986.

Oliveira, P.G.; Pires, A.V.; Meyer, P.M.; Susin, I.; Villarreta, E.T.; Rodrigues, P.H.M.; Santos, F.A.P. Gluconeogenic supplements do not affect production, reproductive traits and blood metabolite of holstein cows during the transition period. Scientia Agricola, 61(4), 2004.

Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Evaluation of nonesterified fatty acids and β-hydroxybutyrate in transition dairy cattle in the northeastern United States: critical thresholds for prediction of clinical diseases. Journal of Dairy Science, 93: 546–554, 2010.

Pers-Kamczyc, E.; Zmora, P.; Coeslak, A.; Szumacher-Strabel, M. Development of nucleic acid based techniques and possibilities of their application to rumen microbial ecology research. Journal of Animal and Feed Sciences, 20: 315–337, 2011.

Plaizier, J.C.; Khafipour, E.; Li, S.; Gozho, G.N.; Krause, D.O. Subacute ruminal acidosis (SARA), endotoxins and health consequences. Animal Feed Science and Technology, 172: 9–21, 2012.

Prasad, D.; Pradhan, K. Relative concentration of protozoa, bacteria and some enzymes in the rumen of cattle, buffalo and sheep fed various straw-concentrate diets. Indian Journal of Animal Science, 60: 576–581, 1990. Regensbogenova M.; Pristas, P.; Javorsky, P.; Moon-van der Staay, S.Y.; Hackstein, J.H.P; Newbold, C.J et al. Assessment of ciliates in the sheep rumen by DGGE. The Society for Applied Microbiology, 39: 144–147. 2004. Reith, S.; Brandt, H.; Hoy, S. Simultaneous analysis of activity and rumination time, based on collar-mounted sensor technology, of dairy cows over the peri-estrus period. Livestock Science, 170: 219-227, 2014. Reynolds, C.K.; Aikman, P.C.; Lupoli, B.; Humphries, D.J.; Beever, D.E. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science, 86: 1201–1217, 2003.

Schirmann, K.; Chapinal, N.; Weary, D.M.; Vickers, L.; Kayserlingk, M.A.G. Short communication: rumination and feeding behavior before and after calving in dairy cows. Journal of Dairy Science, 96: 7088–7092, 2013. Schröder, U.J.; Staufenbiel, R. Invited review: methods to determine body fat reserves in the dairy cow with special regard to ultrasonographic measurement of backfat thickness. Journal of Dairy Science, 89: 1–14, 2006.

Sievers, A.K.; Kristensen, N.B.; Laue, H.; Wolffram, S. Development of an intraruminal device for data sampling and transmission. Journal of Animal and Feed Sciences, 13: 207–210, 2004.

Soriani, N.; Trevisi, E.; Calamari, L. Relationships between ruminantion time, metabolic conditions, and health status in dairy cows during the transition period. Journal of Animal Science, 90: 4544–4554, 2012.

Soriani, N.; Panella, G.; Calamari, L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. Journal of Dairy Science, 96: 1–13, 2013.

Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; AlAbri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. Journal of Dairy Science, 99(9): 7395-7410, 2016.

Steele, M.A.; Vandervoort, G.; AlZahal, O.; Hook,1 S.E.; Matthews, J.C.; McBride1, B.W. Rumen epithelial adaptation to high-grain diets involves the coordinated regulation of genes involved in cholesterol homeostasis. Physiological Genomics, 43:308–316, 2011a.

Steele, M.A.; Croom J.; Kahler, M.; AlZahal, O.; Hook, S.E. Bovine rumen epithelium undergoes rapid structural adaptations during graininduced subacute ruminal acidosis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 300(6): R1515-R1523, 2011b. Suthar, V.S.; Burfeind, O.; Bonk, S.; Dhami, A.J.; Heuwieser, W. Endogenous and exogenous progesterone influence body temperature in dairy cows. Journal of Dairy Science, 95(5): 2381–2389, 2012.

Tewatia, B.S.; Bhatia, S.K. Comparative ruminal biochemical and digestion related physiological characteristics in buffaloes and cattle fed a fibrous diet. Buffalo Journal, 14: 161- 170, 1998.

Urton, G.; Von Keyserlingk, M.A.G.; Weary, D.M. Feeding behavior identifies dairy cows at risk of metritis. Journal of Dairy Science, 88: 28432849, 2005.

Van Soest, P.J. Nutritional ecology of the ruminant. 2nd ed. New York, Cornell University Press, 1994, 476 p.

Ximenes, L.J.F. Segmento de carnes: não basta ser líder em volume, tem que faturar. Caderno Setorial ETENE, (28): 1-11, 2018.

Watanabe, N.; Sakanoue, S.; Kawamura, K.; Kozakai, T. Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer. Grassland Science, 54: 231237, 2008.

Weary, D.M.; Huzzey, J.M.; Von Keyserlingk, V.A.G. Using behavior to predict and identify ill health in animals. Journal of Animal Science, 87: 770–777, 2009.

Welch, J.G.; Smith, A.M. Forage quality and rumination time in cattle. Journal of Dairy Science, 53: 797–800, 1970.

Zebeli, Q.; Metzler-Zebeli, B. Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Research in Veterinary Science, 93: 1099–1108, 2012.

Zebeli, Q.; Ghareeb, K.; Humer, E.; MetzlerZebeli, B.U.; Besenfelder, U. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Research in Veterinary Science, 103: 126-136, 2015.

Publicado

2020-04-23

Cómo citar

Higino, B. de S. S., & Tarso, S. G. S. de. (2020). O rúmen como marcador de saúde: revisão de literatura. Medicina Veterinária, 13(3), 309–317. https://doi.org/10.26605/medvet-v13n3-3287

Número

Sección

Clínica e cirurgia de grandes animais